Solveeit Logo

Question

Physics Question on Wave optics

A 20cm20 \,cm length of a certain solution causes right-handed rotation of 3838^\circ. A 30cm30\, cm length of another solution causes left-handed rotation of 2424^\circ. The optical rotation caused by 30cm30\, cm length of a mixture of the above solutions in the volume ratio 1:21 : 2 is

A

right handed rotation of 1414^\circ

B

left handed rotation of 1414^\circ

C

right handed rotation of 33^\circ

D

left handed rotation of 33^\circ

Answer

right handed rotation of 33^\circ

Explanation

Solution

For liquid AA L1=20cm,θ1=38L_{1}=20 \,cm , \theta_{1}=38^{\circ} ; concentration =C1=C_{1} Specific rotation α1=θ1L1C1\alpha_{1}=\frac{\theta_{1}}{L_{1} C_{1}} =3820×C1=\frac{38^{\circ}}{20 \times C_{1}} Similarly, for liquid BB L2=30cmθ2=24L_{2}=30 cm \theta_{2}=-24^{\circ}, concentration =C2=C_{2} Specific rotation α2=θ2L2C2\alpha_{2}=\frac{\theta_{2}}{L_{2} C_{2}} =(24)30×C2=\frac{\left(-24^{\circ}\right)}{30 \times C_{2}} The mixture has 1 part of liquid AA and 2 parts of liquid BB C1:C2=1:2\therefore C_{1}': C_{2}'=1: 2 θ=[α1C1+α2C2]l\theta=\left[\alpha_{1} C_{1}'+\alpha_{2} C_{2}'\right] l =\left\\{\frac{38^{\circ}}{20 \times C_{1}} \times \frac{C_{1}}{3}+\frac{\left(-24^{\circ}\right)}{30 \times C_{2}} \times \frac{2 C_{2}}{3}\right\\} \times 30 =1916=3=19^{\circ}-16^{\circ}=3^{\circ} Thus, the optical rotation of mixture is +3+3^{\circ} in right hand direction