Solveeit Logo

Question

Question: Three point particles of masses 1.0 kg, 1.5 kg and 2.5 kg are placed at three corners of a right ang...

Three point particles of masses 1.0 kg, 1.5 kg and 2.5 kg are placed at three corners of a right angle triangle of sides 4.0 cm, 3.0 cm and 5.0 cm as shown in the figure. The center of mass of the system is at a point:

A

0.6 cm right and 2.0 cm above 1kg mass

B

2.0 cm right and 0.9 cm above 1 kg mass.

C

0.9 cm right and 2.0 cm above 1kg mass

D

1.5 cm right and 1.2 cm above 1kg mass

Answer

0.9 cm right and 2.0 cm above 1kg mass

Explanation

Solution

To find the center of mass of the system, we need to define a coordinate system and assign coordinates to each mass. Let's place the 1.0 kg mass at the origin (0,0).

  1. Coordinates:

      1. 0 kg mass (m1m_1) is at (0, 0).
      1. 5 kg mass (m2m_2) is at (3.0 cm, 0).
      1. 5 kg mass (m3m_3) is at (0, 4.0 cm).
  2. Total Mass: M=m1+m2+m3=1.0 kg+1.5 kg+2.5 kg=5.0 kgM = m_1 + m_2 + m_3 = 1.0 \text{ kg} + 1.5 \text{ kg} + 2.5 \text{ kg} = 5.0 \text{ kg}.

  3. X-coordinate of the center of mass: XCM=m1x1+m2x2+m3x3M=(1.0 kg)(0 cm)+(1.5 kg)(3.0 cm)+(2.5 kg)(0 cm)5.0 kg=0.9 cmX_{CM} = \frac{m_1x_1 + m_2x_2 + m_3x_3}{M} = \frac{(1.0 \text{ kg})(0 \text{ cm}) + (1.5 \text{ kg})(3.0 \text{ cm}) + (2.5 \text{ kg})(0 \text{ cm})}{5.0 \text{ kg}} = 0.9 \text{ cm}

  4. Y-coordinate of the center of mass: YCM=m1y1+m2y2+m3y3M=(1.0 kg)(0 cm)+(1.5 kg)(0 cm)+(2.5 kg)(4.0 cm)5.0 kg=2.0 cmY_{CM} = \frac{m_1y_1 + m_2y_2 + m_3y_3}{M} = \frac{(1.0 \text{ kg})(0 \text{ cm}) + (1.5 \text{ kg})(0 \text{ cm}) + (2.5 \text{ kg})(4.0 \text{ cm})}{5.0 \text{ kg}} = 2.0 \text{ cm}

Therefore, the center of mass of the system is at (0.9 cm, 2.0 cm) relative to the 1 kg mass.