Solveeit Logo

Question

Question: A 15 kg mass fastened to the end of a steel wire of unstretched length 1.0 m is whirled in a vertica...

A 15 kg mass fastened to the end of a steel wire of unstretched length 1.0 m is whirled in a vertical circle with an angular velocity of 2 revs1s^{- 1} at the bottom of the circle. The cross-section of the wire is0.05cm20.05cm^{2} . The elongation of the wire when the mass is at the lowest point of its path is

(Take, g =10 m s2Ysteel=2×1011 N m2)(\text{Take, }g\ = 1\text{0 m }\text{s}^{- 2}\text{, }Y_{steel} = 2 \times 10^{11}\text{ N }\text{m}^{- 2})

A

0.52 mm

B

1.52 mm

C

2.52 mm

D

3.52 mm

Answer

2.52 mm

Explanation

Solution

: Here, m = 15 kg, r=L=1 m

υ=2revs1,A=0.05cm2=0.5×104m2\upsilon = 2revs^{- 1},A = 0.05cm^{2} = 0.5 \times 10^{- 4}m^{2}

When the mass is at the lowest point of the vertical circle, the stretching force is

F=mg+mrω2=mg+mr(2πυ)2F = mg + mr\omega^{2} = mg + mr(2\pi\upsilon)^{2}

=15×10+15×(1)×(2π×2)2=2516N= 15 \times 10 + 15 \times (1) \times (2\pi \times 2)^{2} = 2516N

As Y=F/AΔL/LY = \frac{F/A}{\Delta L/L}

ΔL=FLAY\therefore\Delta L = \frac{FL}{AY}

ΔL=2516N×1m0.05×104m2×2×1011\Delta L = \frac{2516N \times 1m}{0.05 \times 10^{- 4}m^{2} \times 2 \times 10^{11}}

=2.52×103m=2.52mm= 2.52 \times 10^{- 3}m = 2.52mm