Solveeit Logo

Question

Question: A 1.5 kg box is initially at rest on a horizontal surface when at t = 0 a horizontal force \(\overr...

A 1.5 kg box is initially at rest on a horizontal surface when at t = 0 a horizontal force F=(1.8t)i^N\overrightarrow { \mathrm { F } } = ( 1.8 \mathrm { t } ) \hat { \mathrm { i } } \mathrm { N } (with t in seconds), is applied to the box. The acceleration of the box as a function of time t is given by (take g = 10m/s2)

a\overrightarrow { \mathrm { a } } = 0 for 0 ≤ t ≤ 2.85

a\overrightarrow { \mathrm { a } } = (1.2t – 2.4) i^\hat { \mathbf { i } } m/s2 for t > 2.85

The coefficient of kinetic friction between the box and the surface is (use g = 10 m/s2) :

A

0.12

B

0.24

C

0.36

D

0.48

Answer

0.24

Explanation

Solution

As motion starts after t > 2.85, then for t = 3.0 s.

As motion starts after t>2.85t > 2.85, then for t=3.0 st = 3.0 \mathrm {~s}. f=μ(15)f = \mu ( 15 ) Acceleration at t=3 st = 3 \mathrm {~s} a=1.2×32.4\mathrm { a } = 1.2 \times 3 - 2.4 =1.2 m/s2= 1.2 \mathrm {~m} / \mathrm { s } ^ { 2 } Applying NLM in horizontal direction 5.4 Nμ(15)=1.5×1.25.4 \mathrm {~N} - \mu ( 15 ) = 1.5 \times 1.2 μ=0.24\Rightarrow \quad \mu = 0.24

Acceleration at t = 3s

a = 1.2 × 3 - 2.4 = 12 m/s2

Applying NLM in horizontal direction

5.4 N - μ(15) = 1.5 × 12 ⇒ μ = 0.24