Solveeit Logo

Question

Question: A 15 g ball is shot from a spring gun whose spring has a force constant \(600 \mathrm { Nm } ^ { - ...

A 15 g ball is shot from a spring gun whose spring has a force constant 600Nm1600 \mathrm { Nm } ^ { - 1 } . The spring is compressed by 5 cm. The greatest possible horizontal, range of the ball for this compression (Take g=10 ms2\mathrm { g } = 10 \mathrm {~ms} ^ { - 2 } )

A

6 m

B

8 m

C

10 m

D

12 m

Answer

10 m

Explanation

Solution

Here, Rmax=u2 g=12mu2×2mg\mathrm { R } _ { \max } = \frac { \mathrm { u } ^ { 2 } } { \mathrm {~g} } = \frac { 1 } { 2 } \mathrm { mu } ^ { 2 } \times \frac { 2 } { \mathrm { mg } }

But 12mu2=12kx2\frac { 1 } { 2 } \mathrm { mu } ^ { 2 } = \frac { 1 } { 2 } \mathrm { kx } ^ { 2 }

Rmax=12kx2×2mg=kx2mg=600×(0.05)20.015×10=10 m\therefore \mathrm { R } _ { \max } = \frac { 1 } { 2 } \mathrm { kx } ^ { 2 } \times \frac { 2 } { \mathrm { mg } } = \frac { \mathrm { kx } ^ { 2 } } { \mathrm { mg } } = \frac { 600 \times ( 0.05 ) ^ { 2 } } { 0.015 \times 10 } = 10 \mathrm {~m}