Solveeit Logo

Question

Question: A 100\(\mu F\)capacitor in series with a 40\(\Omega\)resistor is connected to a 100 V, 60 Hz supply....

A 100μF\mu Fcapacitor in series with a 40Ω\Omegaresistor is connected to a 100 V, 60 Hz supply. The maximum current in the circuit is

A

2.65A

B

2.75A

C

2.58A

D

2.95A

Answer

2.95A

Explanation

Solution

: Here, C=100μF=100×106F=104F,C = 100\mu F = 100 \times 10^{- 6}F = 10^{- 4}F,

R = 40 Ω\Omega,

Vrms=100V,υ=60HzV_{rms} = 100V,\upsilon = 60Hz

V0=2Vrms=1002V\therefore V_{0} = \sqrt{2}V_{rms} = 100\sqrt{2}V

In series RC circuit,

Z=R2+XC2=R2+1ω2C2Z = \sqrt{R^{2} + X_{C}^{2}} = \sqrt{R^{2} + \frac{1}{\omega^{2}C^{2}}}

=1R2+14π2υ2C2= \frac{1}{\sqrt{R^{2} + \frac{1}{4\pi^{2}\upsilon^{2}C^{2}}}} [ω=2πυ]\lbrack\because\omega = 2\pi\upsilon\rbrack

Maximum current in the circuit,

I0=V0Z=V0R2+14π2υ2C2I_{0} = \frac{V_{0}}{Z} = \frac{V_{0}}{\sqrt{R^{2} + \frac{1}{4\pi^{2}\upsilon^{2}C^{2}}}}

=1002(40)2+14×(3.14)2×(60)2×(104)2= \frac{100\sqrt{2}}{\sqrt{(40)^{2} + \frac{1}{4 \times (3.14)^{2} \times (60)^{2} \times (10^{- 4})^{2}}}}