Solveeit Logo

Question

Question: A 1000 $W$ electric bulb emits radiation uniformly in all directions with the efficiency of 1.25%. A...

A 1000 WW electric bulb emits radiation uniformly in all directions with the efficiency of 1.25%. A point PP is situated 2m2m away from it. Take ϵ0=8.85×1012C2N1m2\epsilon_0 = 8.85 \times 10^{-12} C^2N^{-1}m^{-2}, c=3×108m/sc = 3 \times 10^8 m/s

The value of peak electric field at PP due to the radiation is x×101V/mx \times 10^{-1} V/m. Value of xx is: (Rounded off to nearest integer)

A

137

B

136

C

138

D

135

Answer

137

Explanation

Solution

The electric bulb consumes a power of Pbulb=1000WP_{bulb} = 1000 \, W. The efficiency of the bulb in emitting radiation is η=1.25%=0.0125\eta = 1.25\% = 0.0125. The power radiated as electromagnetic waves is Prad=Pbulb×η=1000W×0.0125=12.5WP_{rad} = P_{bulb} \times \eta = 1000 \, W \times 0.0125 = 12.5 \, W.

Since the radiation is emitted uniformly in all directions, it is an isotropic source. The intensity (II) of the radiation at a distance rr from the source is given by the power per unit area of a sphere of radius rr: I=Prad4πr2I = \frac{P_{rad}}{4\pi r^2}

At point PP, the distance from the bulb is r=2mr = 2 \, m. So, the intensity at point PP is: I=12.5W4π(2m)2=12.516πW/m2I = \frac{12.5 \, W}{4\pi (2 \, m)^2} = \frac{12.5}{16\pi} \, W/m^2

The intensity of an electromagnetic wave is related to the peak electric field (E0E_0) by the formula: I=12cϵ0E02I = \frac{1}{2} c \epsilon_0 E_0^2 where cc is the speed of light and ϵ0\epsilon_0 is the permittivity of free space.

We can rearrange this formula to solve for E0E_0: E02=2Icϵ0E_0^2 = \frac{2I}{c \epsilon_0} E0=2Icϵ0E_0 = \sqrt{\frac{2I}{c \epsilon_0}}

Substitute the values: I=12.516πW/m2I = \frac{12.5}{16\pi} \, W/m^2 c=3×108m/sc = 3 \times 10^8 \, m/s ϵ0=8.85×1012C2N1m2\epsilon_0 = 8.85 \times 10^{-12} \, C^2N^{-1}m^{-2}

E0=2×12.516π(3×108)×(8.85×1012)E_0 = \sqrt{\frac{2 \times \frac{12.5}{16\pi}}{(3 \times 10^8) \times (8.85 \times 10^{-12})}} E0=2516π26.55×104E_0 = \sqrt{\frac{\frac{25}{16\pi}}{26.55 \times 10^{-4}}} E0=2516π×26.55×104E_0 = \sqrt{\frac{25}{16\pi \times 26.55 \times 10^{-4}}}

Using π3.14159\pi \approx 3.14159: 16π50.26516\pi \approx 50.265 E0=2550.265×26.55×104E_0 = \sqrt{\frac{25}{50.265 \times 26.55 \times 10^{-4}}} E0=251334.55×104E_0 = \sqrt{\frac{25}{1334.55 \times 10^{-4}}} E0=25×1041334.55E_0 = \sqrt{\frac{25 \times 10^4}{1334.55}} E0=2500001334.55187.325E_0 = \sqrt{\frac{250000}{1334.55}} \approx \sqrt{187.325} E013.6866V/mE_0 \approx 13.6866 \, V/m

The problem states that the peak electric field is x×101V/mx \times 10^{-1} \, V/m. So, E0=x×101V/mE_0 = x \times 10^{-1} \, V/m. 13.6866=x×10113.6866 = x \times 10^{-1} x=13.6866101=13.6866×10=136.866x = \frac{13.6866}{10^{-1}} = 13.6866 \times 10 = 136.866

Rounding off to the nearest integer, x=137x = 137.