Solveeit Logo

Question

Question: A 100 W bulb \(B_1\) and two 60 W bulbs \(B_2\) and \(B_3\), are connected to a 220 V source, as sho...

A 100 W bulb B1B_1 and two 60 W bulbs B2B_2 and B3B_3, are connected to a 220 V source, as shown in Figure. Now P1P_1, P2P_2 and P3P_3 are the output powers of the bulbs B1B_1, B2B_2 and B3B_3 respectively. Then:

A) P1>P2=P3{{{P}}_{{1}}}{{ > }}{{{P}}_{{2}}}{{ = }}{{{P}}_{{3}}}
B) P1>P2>P3{{{P}}_{{1}}}{{ > }}{{{P}}_{{2}}}{{ > }}{{{P}}_{{3}}}
C) P1<P2=P3{{{P}}_{{1}}}{{ < }}{{{P}}_{{2}}}{{ = }}{{{P}}_{{3}}}
D) P1<P2<P3{{{P}}_{{1}}}{{ < }}{{{P}}_{{2}}}{{ < }}{{{P}}_{{3}}}

Explanation

Solution

First of all find the resistance of the bulbs using formula, R=V2P{{R = }}\dfrac{{{{{V}}^{{2}}}}}{{{P}}}. Then find out the value of current in the circuit using ohm’s law, I=VR{{I = }}\dfrac{{{V}}}{{{R}}}and then finally find out the value of power in bulbs using formula, P=I2R{{P = }}{{{I}}^{{2}}}{{R}}. Finally evaluate the values of P1,P2andP3{{{P}}_{{1}}}{{, }}{{{P}}_{{2}}}{{ and }}{{{P}}_{{3}}}.

Complete step by step solution:
Given: Output power of bulbB1{{{B}}_{{1}}}, P1=100W{{{P}}_1}{{ = 100 W}}
Output power of bulbs B2{{{B}}_2} and B3{{{B}}_3}, P2=P3=60W{{{P}}_2}{{ = }}{{{P}}_3}{{ = 60 W}}
Voltage V = 220 V
Formula for resistance is R=V2P{{R = }}\dfrac{{{{{V}}^{{2}}}}}{{{P}}}
For bulb B1{{{B}}_{{1}}}, resistance is given by
R1=V2P1\Rightarrow {{{R}}_1}{{ = }}\dfrac{{{{{V}}^{{2}}}}}{{{{{P}}_1}}}
Now substituting the values of V and P1{{{P}}_{{1}}} in above equations, we get
R1=2202100=484Ω\Rightarrow {{{R}}_{{1}}}{{ = }}\dfrac{{{{22}}{{{0}}^{{2}}}}}{{{{100}}}}{{ = 484 \Omega }}
For bulb B2{{{B}}_2}, resistance is given by
R2=V2P2\Rightarrow {{{R}}_2}{{ = }}\dfrac{{{{{V}}^{{2}}}}}{{{{{P}}_2}}}
Now substituting the values of V and P2{{{P}}_2} in above equations, we get
R2=220260=806.7Ω\Rightarrow {{{R}}_2}{{ = }}\dfrac{{{{22}}{{{0}}^{{2}}}}}{{{{60}}}}{{ = 806}}{{.7 \Omega }}
For bulb B3{{{B}}_3}, resistance is given by
R3=V2P3\Rightarrow {{{R}}_3}{{ = }}\dfrac{{{{{V}}^{{2}}}}}{{{{{P}}_3}}}
Now substituting the values of V and P3{{{P}}_3} in above equations, we get
R3=220260=806.7Ω\Rightarrow {{{R}}_3}{{ = }}\dfrac{{{{22}}{{{0}}^{{2}}}}}{{{{60}}}}{{ = 806}}{{.7 \Omega }}
Finding current in the circuit using ohm’s law
V=IR I=VR \Rightarrow {{V = IR}} \\\ \Rightarrow {{I = }}\dfrac{{{V}}}{{{R}}}
Current in bulbs B1{{{B}}_{{1}}} and B2{{{B}}_2}are same i.e. I1=I2=220R1+R2=220484+806.7=0.170A{{{I}}_{{1}}}{{ = }}{{{I}}_{{2}}}{{ = }}\dfrac{{{{220}}}}{{{{{R}}_{{1}}}{{ + }}{{{R}}_{{2}}}}}{{ = }}\dfrac{{{{220}}}}{{{{484 + 806}}{{.7}}}}{{ = 0}}{{.170 A}}
Current in bulb B3{{{B}}_{{3}}} is given by
I3=VR3\Rightarrow {{{I}}_3}{{ = }}\dfrac{{{V}}}{{{{{R}}_3}}}
On substituting the values, we get
I3=220806.3=0.272A\Rightarrow {{{I}}_3}{{ = }}\dfrac{{{{220}}}}{{{{806}}{{.3}}}}{{ = 0}}{{.272 A}}
Formula for power in bulbs is given by
P=I2R\Rightarrow {{P = }}{{{I}}^{{2}}}{{R}}
For bulb B1{{{B}}_{{1}}}, power is given by
P1=I12R1\Rightarrow {{{P}}_1}{{ = }}{{{I}}_1}^{{2}}{{{R}}_1}
On substituting the values, we get
P1=(0.170)2×484=13.987W\Rightarrow {{{P}}_{{1}}}{{ = (0}}{{.170}}{{{)}}^{{2}}}{{ \times 484 = 13}}{{.987 W}}
For bulb B2{{{B}}_2}, power is given by
P2=I22R2\Rightarrow {{{P}}_2}{{ = }}{{{I}}_2}^{{2}}{{{R}}_2}
On substituting the values, we get
P2=(0.170)2×806.7=23.313W\Rightarrow {{{P}}_2}{{ = (0}}{{.170}}{{{)}}^{{2}}}{{ \times 806}}{{.7 = 23}}{{.313 W}}
For bulb B3{{{B}}_3}, power is given by
P3=I32R3\Rightarrow {{{P}}_3}{{ = }}{{{I}}_3}^{{2}}{{{R}}_3}
On substituting the values, we get
P3=(0.272)2×806.7=59.682W\Rightarrow {{{P}}_3}{{ = (0}}{{.272}}{{{)}}^{{2}}}{{ \times 806}}{{.7 = 59}}{{.682 W}}
Thus, P1=13.987W,P2=23.313WandP3=59.682W{{{P}}_{{1}}}{{ = 13}}{{.987 W, }}{{{P}}_{{2}}}{{ = 23}}{{.313 W and }}{{{P}}_{{3}}}{{ = 59}}{{.682 W}}
So, P1<P2<P3{{{P}}_{{1}}}{{ < }}{{{P}}_{{2}}}{{ < }}{{{P}}_{{3}}}

Therefore, option (D) is the correct choice.

Note: A parallel circuit divides the current in various components and each component can draw current as per its appropriate operation or usage. Also, separation on/off switches can be put with each component in parallel combination. Total resistance in parallel combination decreases whereas in series combination increases.