Question
Question: A \[100{\rm{ W}}\] bulb emits monochromatic light of wavelength \[400{\rm{ nm}}\]. Calculate number ...
A 100W bulb emits monochromatic light of wavelength 400nm. Calculate number of photons emitted per second by bulb.
Solution
The photon's energy is equal to the product of its frequency and Planck's constant. The ratio of the speed of light and wavelength of the photon gives us the value of the photon's frequency.
Complete step by step answer:
Given:
The power of the bulb is P=100W.
The wavelength of the monochromatic light is λ=400nm=400nm×(nm10−9m)=400×10−9m.
The expression for the energy of one photon is:
E=hν……(1)
Here h is the Planck's constant and ν is the frequency of the photon.
Let us write the expression for the frequency of one photon.
ν=λc
Here c is the speed of light.
Substitute λc for ν in equation (1).
c = 3 \times {10^8}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\\
\Rightarrow h = 6.626 \times {10^{ - 34}}{\rm{Js}}
E = \dfrac{{\left( {6.626 \times {{10}^{ - 34}}{\rm{Js}}} \right)\left( {3 \times {{10}^8}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)}}{{400 \times {{10}^{ - 9}}{\rm{ m}}}}\\
\Rightarrow E = 4.969 \times {10^{ - 19}}{\rm{ J}}
100{\rm{ W}} = n \times 4.969 \times {10^{ - 19}}{\rm{ J}}\\
\Rightarrow 100{\rm{ W}} \times \left( {\dfrac{{{{\rm{J}} {\left/
{\vphantom {{\rm{J}} {\rm{s}}}} \right.
} {\rm{s}}}}}{{\rm{W}}}} \right) = n \times 4.969 \times {10^{ - 19}}{\rm{ J}}\\
\therefore{\rm{n}} = 2.012 \times {10^{20}}{\rm{ }}{{\rm{1}} {\left/
{\vphantom {{\rm{1}} {\rm{s}}}} \right.
} {\rm{s}}}