Solveeit Logo

Question

Question: A(1,0,0), B(0,2,0), C(0,0,3) from the triangle \[ABC\]. Then the direction ratios of the line joinin...

A(1,0,0), B(0,2,0), C(0,0,3) from the triangle ABCABC. Then the direction ratios of the line joining orthocentre and circumference of ΔABC\Delta ABC are
A. 58,43,3658,43,36
B. 59,44,3759, - 44, - 37
C. 59,44,11159, - 44, - 111
D. None of these

Explanation

Solution

Hint : First of all, find the orthocentre and centroid of ΔABC\Delta ABC. Then the direction ratios of the line joining orthocentre and circumcentre is equal to the direction ratios of the line joining orthocentre and centroid. So, use this concept to reach the solution of the given problem.

Complete step by step solution :
Let H(a,b,c)H\left( {a,b,c} \right) be the orthocentre of ΔABC\Delta ABC as shown in the given below figure:

The direction ratios of the line joining AHAH are (a1,b,c)\left( {a - 1,b,c} \right) and the direction ratios of the line joining BCBC are (0,2,3)\left( {0, - 2,3} \right).
We know that the condition of perpendicularity for two lines to be perpendicular to each other with direction ratios are (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right)is given by x1x2+y1y2+z1z2=0{x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2} = 0
Since, AHAH is perpendicular to BCBC we have

(a1)(0)+(b)(2)+(c)(3)=0 2b+3c=0 b=32c  \Rightarrow \left( {a - 1} \right)\left( 0 \right) + \left( b \right)\left( { - 2} \right) + \left( c \right)\left( 3 \right) = 0 \\\ \Rightarrow - 2b + 3c = 0 \\\ \therefore b = \dfrac{3}{2}c \\\

The direction ratios of the line joining BHBH are (a,b2,c)\left( {a,b - 2,c} \right) and the direction ratios of the line joining CACA are (1,0,3)\left( {1,0, - 3} \right).
Since, BHBH is perpendicular to CACA we have

(a)(1)+(b2)(0)+(c)(3)=0 a3c=0 a=3c  \Rightarrow \left( a \right)\left( 1 \right) + \left( {b - 2} \right)\left( 0 \right) + \left( c \right)\left( { - 3} \right) = 0 \\\ \Rightarrow a - 3c = 0 \\\ \therefore a = 3c \\\

Clearly H(a,b,c)H\left( {a,b,c} \right) lies on the plane x1+y2+z3=1\dfrac{x}{1} + \dfrac{y}{2} + \dfrac{z}{3} = 1. So, we have

a1+b2+c3=1 3c1+32c2+c3=1 [a=3c,b=32c] 3c+34c+c3=1 12×3c+3×3c+4×c12=1 36c+9c+4c=12 49c=12 c=1249  \Rightarrow \dfrac{a}{1} + \dfrac{b}{2} + \dfrac{c}{3} = 1 \\\ \Rightarrow \dfrac{{3c}}{1} + \dfrac{{\dfrac{3}{2}c}}{2} + \dfrac{c}{3} = 1{\text{ }}\left[ {\because a = 3c,b = \dfrac{3}{2}c} \right] \\\ \Rightarrow 3c + \dfrac{3}{4}c + \dfrac{c}{3} = 1 \\\ \Rightarrow \dfrac{{12 \times 3c + 3 \times 3c + 4 \times c}}{{12}} = 1 \\\ \Rightarrow 36c + 9c + 4c = 12 \\\ \Rightarrow 49c = 12 \\\ \therefore c = \dfrac{{12}}{{49}} \\\

By substituting c=1249c = \dfrac{{12}}{{49}} in a=3ca = 3c, we have

a=3×1249 a=3649  \Rightarrow a = 3 \times \dfrac{{12}}{{49}} \\\ \therefore a = \dfrac{{36}}{{49}} \\\

By substituting c=1249c = \dfrac{{12}}{{49}} in b=32cb = \dfrac{3}{2}c, we have

b=32×1249 b=1849  \Rightarrow b = \dfrac{3}{2} \times \dfrac{{12}}{{49}} \\\ \therefore b = \dfrac{{18}}{{49}} \\\

Hence, the orthocentre of the ΔABC\Delta ABC is H(a,b,c)=(3649,1849,1249)H\left( {a,b,c} \right) = \left( {\dfrac{{36}}{{49}},\dfrac{{18}}{{49}},\dfrac{{12}}{{49}}} \right).
We know that, the centroid of a triangle with sides (x1,y1,z1),(x2,y2,z2)&(x3,y3,z3)\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)\& \left( {{x_3},{y_3},{z_3}} \right) is given by (x1+x2+x33,y1+y2+y33,z1+z2+z33)\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right).
Hence, the centroid OO of the triangle ΔABC\Delta ABC with sides A(1,0,0),B(0,2,0),C(0,0,3)A\left( {1,0,0} \right),B\left( {0,2,0} \right),C\left( {0,0,3} \right) is given by

O=(1+0+03,0+2+03,0+0+33) O=(13,23,33)  \Rightarrow O = \left( {\dfrac{{1 + 0 + 0}}{3},\dfrac{{0 + 2 + 0}}{3},\dfrac{{0 + 0 + 3}}{3}} \right) \\\ \therefore O = \left( {\dfrac{1}{3},\dfrac{2}{3},\dfrac{3}{3}} \right) \\\

We know that the direction ratios of the line joining orthocentre and circumcentre is equal to the direction ratios of the line joining orthocentre and centroid.
So, the direction ratios of the line joining orthocentre (13,23,33)\left( {\dfrac{1}{3},\dfrac{2}{3},\dfrac{3}{3}} \right) and centroid (3649,1849,1249)\left( {\dfrac{{36}}{{49}},\dfrac{{18}}{{49}},\dfrac{{12}}{{49}}} \right) is given by (364913,184923,124933)=(59147,44147,111147)\left( {\dfrac{{36}}{{49}} - \dfrac{1}{3},\dfrac{{18}}{{49}} - \dfrac{2}{3},\dfrac{{12}}{{49}} - \dfrac{3}{3}} \right) = \left( {\dfrac{{59}}{{147}},\dfrac{{ - 44}}{{147}},\dfrac{{ - 111}}{{147}}} \right). Since, these are direction ratios we can cancel the common terms. Hence by cancelling 147 in all its denominators we have the centroid as (59,44,111)\left( {59, - 44, - 111} \right) which is our required circumcentre.
Therefore, the direction ratios of the line joining orthocentre and circumcentre is (59,44,111)\left( {59, - 44, - 111} \right)
Thus, the correct option is C. 59,44,11159, - 44, - 111

Note : The orthocentre of a triangle is the intersection of the triangle`s three altitudes. The circumcentre of a triangle is defined as the point where the perpendicular bisectors of the sides of that particular triangle intersects.