Solveeit Logo

Question

Question: A \(10{\text{L}}\) container at \(300{\text{K}}\) contains \(C{O_2}\) gas at pressure of \(0.2{\text...

A 10L10{\text{L}} container at 300K300{\text{K}} contains CO2C{O_2} gas at pressure of 0.2atm0.2{\text{atm}} and an excess solid CaO{\text{CaO}} (neglect the volume of solid CaO{\text{CaO}} ). The volume of the container is now decreased by moving the movable piston fitted in the container. What will be the maximum volume of the container when pressure of CO2{\text{C}}{{\text{O}}_{\text{2}}} attains its maximum value.
given that CaCO3CaCO(s) + CO2(g){\text{CaC}}{{\text{O}}_{\text{3}}} \rightleftarrows {\text{CaCO}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) . Kp = 0.800atm{{\text{K}}_{\text{p}}}{\text{ = 0}}{\text{.800atm}}
A.5L{\text{5L}}
B.2.5L{\text{2}}{\text{.5L}}
C.1L{\text{1L}}
D.The information is insufficient

Explanation

Solution

To solve this question, it is required to have knowledge about Boyle’s law. Since we have been given volume, pressure, temperature and kp{{\text{k}}_{\text{p}}} we can calculate the final pressure of the gas and then the volume it attains using Boyle’s law.
Formula used:
Boyle's Law: PiVi = PfVf{{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}{\text{ = }}{{\text{P}}_{\text{f}}}{{\text{V}}_{\text{f}}}
where Pi and Pf{{\text{P}}_{\text{i}}}{\text{ and }}{{\text{P}}_{\text{f}}} is the initial and final pressure and Vi and Vf{{\text{V}}_{\text{i}}}{\text{ and }}{{\text{V}}_{\text{f}}} is the initial and final volume.

Complete step by step answer:
From the reaction CaCO3CaCO(s) + CO2(g){\text{CaC}}{{\text{O}}_{\text{3}}} \rightleftarrows {\text{CaCO}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right)
Volume = 10L{\text{10L}}
Temperature = 300K{\text{300K}}
Pressure (initial) of CO2{\text{C}}{{\text{O}}_{\text{2}}}= 0.2atm0.2{\text{atm}}
Given Kp = 0.800atm{{\text{K}}_{\text{p}}}{\text{ = 0}}{\text{.800atm}}
Since CaCO3{\text{CaC}}{{\text{O}}_{\text{3}}}and CaCO(s){\text{CaCO}}\left( {\text{s}} \right)are solids, they don't contribute to pressure. Therefore kp{{\text{k}}_{\text{p}}} depends only on carbon dioxide. So, kp{{\text{k}}_{\text{p}}}= pressure of carbon dioxide at equilibrium
Hence, we can say that the maximum pressure of carbon dioxide after compression is 0.800.80.
So, pressure (final) = 0.80atm0.80{\text{atm}}
According to Boyle's Law
PiVi = PfVf{{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}{\text{ = }}{{\text{P}}_{\text{f}}}{{\text{V}}_{\text{f}}}
Vf = PiViPf{{\text{V}}_{\text{f}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}}}{{{{\text{P}}_{\text{f}}}}} = 0.2×100.80=2.5L\dfrac{{0.2 \times 10}}{{0.80}} = 2.5{\text{L}}

Therefore, the answer is - option (B) - The maximum volume of the container, when the pressure of carbon dioxide attains its maximum value, will be 2.5L{\text{2}}{\text{.5L}}.

Additional Information:
According to Boyle's law "the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature".

Note:
kp{{\text{k}}_{\text{p}}} is a gas equilibrium constant. It is calculated from the partial pressures of a reaction equation. kp{{\text{k}}_{\text{p}}} is used to express the relationship between product and reactant pressures. The equilibrium constants kp{{\text{k}}_{\text{p}}} , kc{{\text{k}}_{\text{c}}} and kx{{\text{k}}_{\text{x}}} are related as: kp = kx(P)Delta n = kc(RT)Delta n{{\text{k}}_{\text{p}}}{\text{ = }}{{\text{k}}_{\text{x}}}{\left( {\text{P}} \right)^{{\text{Delta n}}}}{\text{ = }}{{\text{k}}_{\text{c}}}{\left( {{\text{RT}}} \right)^{{\text{Delta n}}}}