Solveeit Logo

Question

Question: A 10 $\Omega$ resistor is connected in series with a parallel combination of two resistors (4 $\Omeg...

A 10 Ω\Omega resistor is connected in series with a parallel combination of two resistors (4 Ω\Omega and 6 Ω\Omega). The circuit is powered by a 24 V battery with an internal resistance of 1 Ω\Omega. Calculate the current through the 6 Ω\Omega resistor. i1=R2\frac{i_1}{}=\frac{R_2}{}

Answer

0.72 A

Explanation

Solution

Solution:

  1. Find Equivalent Resistance of the Parallel Combination:

    Rparallel=4×64+6=2410=2.4ΩR_{\text{parallel}} = \frac{4 \times 6}{4+6} = \frac{24}{10} = 2.4\,\Omega
  2. Determine Total Circuit Resistance:

    Including the 1 Ω internal resistance and 10 Ω resistor in series:

    Rtotal=1+10+2.4=13.4ΩR_{\text{total}} = 1 + 10 + 2.4 = 13.4\,\Omega
  3. Calculate Total Current from the Battery:

    Itotal=24V13.4Ω1.79AI_{\text{total}} = \frac{24\,V}{13.4\,\Omega} \approx 1.79\,A
  4. Voltage Across the Parallel Combination:

    Vparallel=Itotal×Rparallel1.79A×2.4Ω4.30VV_{\text{parallel}} = I_{\text{total}} \times R_{\text{parallel}} \approx 1.79\,A \times 2.4\,\Omega \approx 4.30\,V
  5. Current Through the 6 Ω Resistor Using Ohm’s Law:

    I6=Vparallel6Ω4.30V6Ω0.72AI_{6} = \frac{V_{\text{parallel}}}{6\,\Omega} \approx \frac{4.30\,V}{6\,\Omega} \approx 0.72\,A

    Alternatively, using current division:

    I6=Itotal×Rother4+6=1.79A×4100.72AI_{6} = I_{\text{total}} \times \frac{R_{\text{other}}}{4+6} = 1.79\,A \times \frac{4}{10} \approx 0.72\,A