Solveeit Logo

Question

Question: A 10 L box contains 41.4g of a mixture of gases \({C_x}{H_8}\) and \({C_x}{H_{12}}\) . The total pre...

A 10 L box contains 41.4g of a mixture of gases CxH8{C_x}{H_8} and CxH12{C_x}{H_{12}} . The total pressure at 440C{44^0}C in flask is 1.56 atm. Analysis revealed that the gas mixture has 87% total CC and 13% total HH. Find out the value of xx .
A) 1
B) 3
C) 5
D) 2

Explanation

Solution

To find the value of xx , first we need to find the total mass of carbon in the mixture in the form of xx and then find the observed percentage of carbon in the mixture. Equate this observed percentage with the given percentage of total carbon in the mixture.

Complete step by step answer:
Given data: Pressure (P) = 1.56 atm
Volume (V) = 10 L
Temperature (T) = 440C{44^0}C=317 K
Gas constant (R) = 0.0821 L atm mol1 K10.0821{\text{ L atm mo}}{{\text{l}}^{ - 1}}{\text{ }}{{\text{K}}^{ - 1}}
Using Ideal gas equation:
PV=nRTPV = nRT
n=PVRTn = \dfrac{{PV}}{{RT}} --- (1)
where, P= pressure , V= volume, T= temperature, R= gas constant and n= no. of moles of the gas.
Putting the values of given data in equation (1),

We get , n=1.56 atm×10 L0.0821 L atm mol1 K1×317 K=0.6 moln = \dfrac{{1.56{\text{ atm}} \times 10{\text{ L}}}}{{0.0821{\text{ L atm mo}}{{\text{l}}^{ - 1}}{\text{ }}{{\text{K}}^{ - 1}} \times 317{\text{ K}}}} = 0.6{\text{ mol}}
\Rightarrow 0.6 mol are the total moles of the mixture of two given gases.

Let, moles of CxH8{C_x}{H_8} be ‘aa’ , then moles of CxH12{C_x}{H_{12}} will be 0.6  a'0.6{\text{ }} - {\text{ }}a' .
Mass of carbon in ‘aa’ mol of CxH8{C_x}{H_8}= 12ax g12ax{\text{ g}}
Mass of carbon in 0.6  a'0.6{\text{ }} - {\text{ }}a'mol of CxH12{C_x}{H_{12}}= 12×(0.6a)x g12 \times (0.6 - a)x{\text{ g}}
\therefore Total mass of carbon in the mixture =12ax+12(0.6a)x=7.2x g12ax + 12(0.6 - a)x = 7.2x{\text{ g}}
Also, given that total mass of the mixture is 41.4 g .
\therefore percentage of carbon in the mixture = mass of carbon in the mixture  total mass of the mixture×100\dfrac{{{\text{mass of carbon in the mixture }}}}{{{\text{ total mass of the mixture}}}} \times 100
\Rightarrow percentage of carbon in the mixture= 7.2x41.4×100\dfrac{{7.2x}}{{41.4}} \times 100

It is given in the question that the gas mixture contains 87% carbon. So equating the above observed percentage of carbon in the mixture with the given percentage .
\Rightarrow 7.2x41.4×100=87\dfrac{{7.2x}}{{41.4}} \times 100 = 87
\therefore x=5x = 5
So, the correct answer is “Option C”.

Note: Take care of the units of R and its value for different units.
R=0.08314 bar dm3mol1 K1R=0.0821 atm L mol1 K1 R = 8.314 J mol1 K1 \begin{gathered} R = 0.08314{\text{ bar d}}{{\text{m}}^3}{\text{mo}}{{\text{l}}^{ - 1}}{\text{ }}{{\text{K}}^{ - 1}} R = 0.0821{\text{ atm L mo}}{{\text{l}}^{ - 1}}{\text{ }}{{\text{K}}^{ - 1}}{\text{ }} R{\text{ = 8}}{\text{.314 J mo}}{{\text{l}}^{ - 1}}{\text{ }}{{\text{K}}^{ - 1}}{\text{ }} \end{gathered}
Also, note that mass of a substance = no. of moles ×\times atomic/molecular mass.