Solveeit Logo

Question

Question: A 10 kg satellite circles earth once every 2 h in an orbit having a radius of 8000 km. Assuming that...

A 10 kg satellite circles earth once every 2 h in an orbit having a radius of 8000 km. Assuming that Bohr’s angular momentum postulate applies to a satellite just as it does to an electron in the hydrogen atom, then the quantum number of the orbit of satellite is

A

5.5×10405.5 \times 10^{40}

B

5.3×10455.3 \times 10^{45}

C

7.8×10487.8 \times 10^{48}

D

7.8×10507.8 \times 10^{50}

Answer

5.3×10455.3 \times 10^{45}

Explanation

Solution

Here m = 10 kg rn=8×106mr_{n} = 8 \times 10^{6}m

T=2×60×60=7200sT = 2 \times 60 \times 60 = 7200s

Velocity of nth orbit vn=2πrnTv_{n} = \frac{2\pi r_{n}}{T} and from mvnrn=nh2πmv_{n}r_{n} = \frac{nh}{2\pi}

n=2πh×m×2πrnT×rnn = \frac{2\pi}{h} \times m \times \frac{2\pi r_{n}}{T} \times r_{n}

=(2πrn)2×mT×h=(2π×8×106)2×107200×6.64×1034= (2\pi r_{n})^{2} \times \frac{m}{T \times h} = \frac{(2\pi \times 8 \times 10^{6})^{2} \times 10}{7200 \times 6.64 \times 10^{- 34}}

=5.3×1045= 5.3 \times 10^{45}