Solveeit Logo

Question

Question: A \(10.0{\text{ }}{{\text{m}}^3}\) tank is constructed to store LNG (liquefied natural gas, \({\text...

A 10.0 m310.0{\text{ }}{{\text{m}}^3} tank is constructed to store LNG (liquefied natural gas, CH{\text{CH}}) at 164C - {164^ \circ }{\text{C}} and 1 atm1{\text{ atm}} pressure, under which density is 415 kg/m3415{\text{ kg/}}{{\text{m}}^3}. Calculate the volume of the storage tank capable of holding the same mass of LNG as a gas at 20C{20^ \circ }{\text{C}} and 1 atm1{\text{ atm}} pressure.

Explanation

Solution

From the given density first calculate the mass of the LNG. Then calculate the number of moles of LNG. Then using the ideal gas equation calculate the volume of the storage tank.

Formula Used:
1. d=mVd = \dfrac{m}{V}
2. Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
3. PV=nRTPV = nRT

Complete answer:
First we will calculate the mass of LNG (liquefied natural gas).
We know that the density is the ratio of mass to volume. Thus,
d=mVd = \dfrac{m}{V}
where
dd is the density of the gas,
mm is the mass of the gas,
VV is the volume of the gas,
Rearrange the equation for the mass of the gas as follows:
m=d×Vm = d \times V
Substitute 415 kg/m3415{\text{ kg/}}{{\text{m}}^3} for the density, 10.0 m310.0{\text{ }}{{\text{m}}^3} for the volume of the gas. Thus,
m=415 kg/m3×10.0 m3m = 415{\text{ kg/}}{{\text{m}}^3} \times 10.0{\text{ }}{{\text{m}}^3}
m=4150 kgm = 4150{\text{ kg}}
Thus, the mass of LNG (liquefied natural gas) is 4150 kg4150{\text{ kg}}.
Now, calculate the number of moles of LNG (liquefied natural gas) using the equation as follows:
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
The molar mass of LNG (CH)\left( {{\text{CH}}} \right) is the mass of carbon and hydrogen. Thus, molar mass of LNG is 13 g/mol13{\text{ g/mol}}. Substitute 4150×103 g4150 \times {10^3}{\text{ g}} for the mass of LNG. Thus,
Number of moles=4150×103 g13 g/mol{\text{Number of moles}} = \dfrac{{4150 \times {{10}^3}{\text{ g}}}}{{13{\text{ g/mol}}}}
Number of moles=319.23×103 mol\Rightarrow {\text{Number of moles}} = 319.23 \times {10^3}{\text{ mol}}
Thus, the number of moles of LNG (liquefied natural gas) are 319.23×103 mol319.23 \times {10^3}{\text{ mol}}.
We know that the expression for the ideal gas law is as follows:
PV=nRTPV = nRT
where,
PP is the pressure of the gas,
VV is the volume of the gas,
nn is the number of moles of gas,
RR is the universal gas constant,
TT is the temperature of the gas.
Rearrange the equation for the volume of gas as follows:
V=nRTPV = \dfrac{{nRT}}{P}
Substitute 319.23×103 mol319.23 \times {10^3}{\text{ mol}} for the number of moles of gas, 0.082 L atm/K mol0.082{\text{ L atm/K mol}} for the universal gas constant, 20C+273=293 K{20^ \circ }{\text{C}} + 273 = 293{\text{ K}} for the temperature, 1 atm1{\text{ atm}} for the pressure. Thus,
V=319.23×103 mol×0.082 L atm/K mol×293 K1 atm\Rightarrow V = \dfrac{{319.23 \times {{10}^3}{\text{ mol}} \times 0.082{\text{ L atm/K mol}} \times 293{\text{ K}}}}{{1{\text{ atm}}}}
V=7.669×106 L\Rightarrow V = 7.669 \times {10^6}{\text{ L}}

**Thus, the volume of storage tank capable of holding the same mass of LNG as a gas at 20C{20^ \circ }{\text{C}} and 1 atm1{\text{ atm}} pressure is 7.669×106 L=7699 m37.669 \times {10^6}{\text{ L}} = 7699{\text{ }}{{\text{m}}^3}.

Note:**
We have used the ideal gas law. The ideal gas law states for a given mass of an ideal gas and a constant volume of an ideal gas, the pressure exerted by the molecules of an ideal gas is directly proportional to its absolute temperature.