Solveeit Logo

Question

Physics Question on work, energy and power

A 1kg1\, kg block situated on a rough incline is connected to a spring of negligible mass having spring constant 100Nm1100\, N\,m^{-1} as shown in the figure. The block is released from rest with the spring in the unstretched position. The block moves 10cm10\, cm down the incline before coming to rest. The coefficient of friction between the block and the incline is (Take g=10ms2g = 10\, ms^{-2} and assume that the pulley is frictionless)

A

0.20.2

B

0.30.3

C

0.50.5

D

0.60.6

Answer

0.30.3

Explanation

Solution

Here, m=1kgm = 1\, kg , θ=45?\theta = 45^? , k=100Nm1k = 100 \,N \,m^{-1} From figure, N=mgcosθN = mgcos\theta f=μN=μmgcosθf= \mu N = \mu mgcos\theta where μ\mu is the coefficient of friction between the block and the incline. Net force on the block down the incline, =mgsinθf= mgsin\theta - f =mgsinθμmgcosθ=mg(sinθμcosθ)= mgsin\theta - \mu mgcos\theta = mg(sin\theta - \mu cos\theta) Distance moved, x=10cm=10×102mx = 10\, cm = 10 \times 10^{-2}\,m In equilibrium, Work done = Potential energy of stretched spring mg(sinθμcosθ)x=12kx2mg(sin\theta - \mu cos\theta)x = \frac{1}{2}kx^2 2mg(sinθμcosθ)=kx2mg \,(sin\theta - \mu cos\theta) = kx 2×1×10×(sin45μcos45)2 \times 1 \times 10 \times \left(sin45^{\circ}-\mu cos45^{\circ}\right) =100×10×102= 100 \times 10 \times 10^{-2} sin45μcos45=12sin\,45^{\circ} - \mu\,cos\,45^{\circ} = \frac{1}{2} 12μ2=12\frac{1}{\sqrt{2}}-\frac{\mu}{\sqrt{2}} = \frac{1}{2} 1μ=22=121-\mu = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}} μ=112=212\Rightarrow \mu = 1 - \frac{1}{\sqrt{2}} = \frac{\sqrt{2}-1}{\sqrt{2}} μ=0.3\mu = 0.3