Solveeit Logo

Question

Question: Which of the following options is/are correct, if S : If $a_{n-1} = \frac{a_n-n}{n} \forall n \in N...

Which of the following options is/are correct, if

S : If an1=annnnN{1},a1=1a_{n-1} = \frac{a_n-n}{n} \forall n \in N -\{1\}, a_1 = 1, then limnr=1n(1+1ar)=e\lim_{n\to\infty} \prod_{r=1}^{n} (1 + \frac{1}{a_r}) = e.

T : limn(n2+n+1n+1(an+b))=47a2b=15\lim_{n\to\infty} (\frac{n^2+n+1}{n+1}-(an+b)) = 4 \Rightarrow 7a-2b=15.

A

S is True and T is False

B

S is False and T is True

C

Both S and T are True

D

Both S and T are Flase

Answer

Both S and T are True

Explanation

Solution

Statement S: The given recurrence relation is an1=annna_{n-1} = \frac{a_n-n}{n} for nN{1}n \in N -\{1\}, which means n2n \ge 2. This can be rewritten as nan1=annn a_{n-1} = a_n - n, so an=nan1+n=n(an1+1)a_n = n a_{n-1} + n = n(a_{n-1} + 1) for n2n \ge 2. Given a1=1a_1 = 1. Let's check if the relation an=n(an1+1)a_n = n(a_{n-1} + 1) holds for n=1n=1. If we substitute n=1n=1, we get a1=1(a0+1)a_1 = 1(a_0+1), which involves a0a_0. The recurrence is given for n2n \ge 2. However, let's rewrite the relation as an1+1=anna_{n-1} + 1 = \frac{a_n}{n} for n2n \ge 2. For n=2n=2: a1+1=a22a_1 + 1 = \frac{a_2}{2}. Since a1=1a_1=1, 1+1=a22a2=41+1 = \frac{a_2}{2} \Rightarrow a_2 = 4. For n=3n=3: a2+1=a33a_2 + 1 = \frac{a_3}{3}. Since a2=4a_2=4, 4+1=a33a3=154+1 = \frac{a_3}{3} \Rightarrow a_3 = 15. For n=4n=4: a3+1=a44a_3 + 1 = \frac{a_4}{4}. Since a3=15a_3=15, 15+1=a44a4=6415+1 = \frac{a_4}{4} \Rightarrow a_4 = 64. The relation ar1+1=arra_{r-1} + 1 = \frac{a_r}{r} holds for r2.Thisisequivalenttor \ge 2. This is equivalent to a_r + 1 = \frac{a_{r+1}}{r+1}forforr \ge 1$.

We need to evaluate the limit of the product Pn=r=1n(1+1ar)P_n = \prod_{r=1}^{n} (1 + \frac{1}{a_r}) as nn \to \infty. Pn=r=1nar+1arP_n = \prod_{r=1}^{n} \frac{a_r+1}{a_r}. Using the relation ar+1=ar+1r+1a_r+1 = \frac{a_{r+1}}{r+1} for r1r \ge 1, we have ar+1ar=ar+1/(r+1)ar=ar+1(r+1)ar\frac{a_r+1}{a_r} = \frac{a_{r+1}/(r+1)}{a_r} = \frac{a_{r+1}}{(r+1)a_r}. So, Pn=r=1nar+1(r+1)ar=a22a1a33a2a44a3an+1(n+1)anP_n = \prod_{r=1}^{n} \frac{a_{r+1}}{(r+1)a_r} = \frac{a_2}{2a_1} \cdot \frac{a_3}{3a_2} \cdot \frac{a_4}{4a_3} \cdot \dots \cdot \frac{a_{n+1}}{(n+1)a_n}. This is a telescoping product: Pn=a2a3an+1(23(n+1))(a1a2an)=an+1(n+1)!a1P_n = \frac{a_2 \cdot a_3 \cdot \dots \cdot a_{n+1}}{(2 \cdot 3 \cdot \dots \cdot (n+1)) \cdot (a_1 \cdot a_2 \cdot \dots \cdot a_n)} = \frac{a_{n+1}}{(n+1)! a_1}. Since a1=1a_1 = 1, Pn=an+1(n+1)!P_n = \frac{a_{n+1}}{(n+1)!}.

From the relation an=n(an1+1)a_n = n(a_{n-1} + 1) for n2n \ge 2, we have ann!=n(an1+1)n!=an1+1(n1)!\frac{a_n}{n!} = \frac{n(a_{n-1}+1)}{n!} = \frac{a_{n-1}+1}{(n-1)!} for n2n \ge 2. Let bn=ann!b_n = \frac{a_n}{n!}. Then bn=an1(n1)!+1(n1)!=bn1+1(n1)!b_n = \frac{a_{n-1}}{(n-1)!} + \frac{1}{(n-1)!} = b_{n-1} + \frac{1}{(n-1)!} for n2n \ge 2. This is a recurrence relation for bnb_n. b2=b1+11!b_2 = b_1 + \frac{1}{1!} b3=b2+12!=b1+11!+12!b_3 = b_2 + \frac{1}{2!} = b_1 + \frac{1}{1!} + \frac{1}{2!} bn=b1+k=1n11k!b_n = b_1 + \sum_{k=1}^{n-1} \frac{1}{k!} for n2n \ge 2. b1=a11!=11=1b_1 = \frac{a_1}{1!} = \frac{1}{1} = 1. So, bn=1+k=1n11k!=k=0n11k!b_n = 1 + \sum_{k=1}^{n-1} \frac{1}{k!} = \sum_{k=0}^{n-1} \frac{1}{k!} for n2n \ge 2. For n=1n=1, b1=a11!=1b_1 = \frac{a_1}{1!} = 1, and k=0111k!=10!=1\sum_{k=0}^{1-1} \frac{1}{k!} = \frac{1}{0!} = 1. So the formula bn=k=0n11k!b_n = \sum_{k=0}^{n-1} \frac{1}{k!} holds for n1n \ge 1.

We have Pn=an+1(n+1)!=bn+1P_n = \frac{a_{n+1}}{(n+1)!} = b_{n+1}. So, Pn=k=0(n+1)11k!=k=0n1k!P_n = \sum_{k=0}^{(n+1)-1} \frac{1}{k!} = \sum_{k=0}^{n} \frac{1}{k!}. We need to find limnPn=limnk=0n1k!\lim_{n\to\infty} P_n = \lim_{n\to\infty} \sum_{k=0}^{n} \frac{1}{k!}. This is the definition of the exponential constant ee. limnk=0n1k!=e\lim_{n\to\infty} \sum_{k=0}^{n} \frac{1}{k!} = e. So, limnr=1n(1+1ar)=e\lim_{n\to\infty} \prod_{r=1}^{n} (1 + \frac{1}{a_r}) = e. Statement S is True.

Statement T: We are given limn(n2+n+1n+1(an+b))=4\lim_{n\to\infty} (\frac{n^2+n+1}{n+1}-(an+b)) = 4. Let's simplify the expression inside the limit: n2+n+1n+1(an+b)=n2+n+1(an+b)(n+1)n+1\frac{n^2+n+1}{n+1}-(an+b) = \frac{n^2+n+1 - (an+b)(n+1)}{n+1} =n2+n+1(an2+an+bn+b)n+1= \frac{n^2+n+1 - (an^2 + an + bn + b)}{n+1} =(1a)n2+(1ab)n+(1b)n+1= \frac{(1-a)n^2 + (1-a-b)n + (1-b)}{n+1}. For the limit as nn \to \infty to be a finite value (4), the degree of the numerator must be less than or equal to the degree of the denominator. The degree of the denominator is 1. The degree of the numerator is 2. For the limit to be finite, the coefficient of n2n^2 in the numerator must be zero. 1a=0a=11-a = 0 \Rightarrow a = 1. Substitute a=1a=1 into the expression: (11)n2+(11b)n+(1b)n+1=bn+(1b)n+1\frac{(1-1)n^2 + (1-1-b)n + (1-b)}{n+1} = \frac{-bn + (1-b)}{n+1}. Now, evaluate the limit: limnbn+(1b)n+1\lim_{n\to\infty} \frac{-bn + (1-b)}{n+1}. Divide numerator and denominator by nn: limnb+1bn1+1n=b+01+0=b\lim_{n\to\infty} \frac{-b + \frac{1-b}{n}}{1 + \frac{1}{n}} = \frac{-b + 0}{1 + 0} = -b. We are given that this limit is 4. So, b=4b=4-b = 4 \Rightarrow b = -4. We found a=1a=1 and b=4b=-4. The statement T claims that if the limit is 4, then 7a2b=157a-2b=15. Let's substitute the values of aa and bb we found into the expression 7a2b7a-2b: 7(1)2(4)=7+8=157(1) - 2(-4) = 7 + 8 = 15. The condition 7a2b=157a-2b=15 is satisfied with a=1a=1 and b=4b=-4. Therefore, Statement T is True.

Both Statement S and Statement T are True.