Solveeit Logo

Question

Question: \({{a}_{1}},{{a}_{2}},{{a}_{3}}..........{{a}_{10}}\) are in an arithmetic progression and \({{h}_{1...

a1,a2,a3..........a10{{a}_{1}},{{a}_{2}},{{a}_{3}}..........{{a}_{10}} are in an arithmetic progression and h1,h2,h3..........h10{{h}_{1}},{{h}_{2}},{{h}_{3}}..........{{h}_{10}} is in harmonic progression. The first terms of both the series are a1=h1=2{{a}_{1}}={{h}_{1}}=2 and the last terms a10=h10=3{{a}_{10}}={{h}_{10}}=3. Then find out the value of a4h7{{a}_{4}}{{h}_{7}}.
A. 22
B. 33
C. 55
D. 66

Explanation

Solution

We will find the common difference for the first sequence by applying the formula for nth{{n}^{th}} term that is an=a+(n1)d{{a}_{n}}=a+\left( n-1 \right)d, where we will take n=10n=10 , then after finding the common difference and then find the value of a4{{a}_{4}} and then for the harmonic progression we will convert it into arithmetic progression and then again follow the same procedure and find the value of h7{{h}_{7}} and then put those values into a4.h7{{a}_{4}}.{{h}_{7}} and get the answer.

Complete step-by-step answer :
We know that if a series is in arithmetic progression then the formula for nth{{n}^{th}} term is as follows:
an=a+(n1)d{{a}_{n}}=a+\left( n-1 \right)d ,
Where,
an=nth{{a}_{n}}={{n}^{th}} term of the A.P.
a=a=first term ,
n=n= the total number of terms ,
d=d= common difference
Now, we are given the first sequence as: a1,a2,a3..........a10{{a}_{1}},{{a}_{2}},{{a}_{3}}..........{{a}_{10}} and also given that a1=2{{a}_{1}}=2 and a10=3{{a}_{10}}=3, so we will apply the formula for nth{{n}^{th}} term, for n=10n=10 :

Therefore,
an=a+(n1)d 3=2+(101)d 32=9dd=19 \begin{aligned} & \Rightarrow {{a}_{n}}=a+\left( n-1 \right)d \\\ & \Rightarrow 3=2+\left( 10-1 \right)d \\\ & \Rightarrow 3-2=9d\Rightarrow d=\dfrac{1}{9} \\\ \end{aligned}

So, the common difference is: d=19d=\dfrac{1}{9}
Now to find the value of a4{{a}_{4}}, we will apply the formula for an{{a}_{n}} for n=4n=4 , a=2a=2 and d=19d=\dfrac{1}{9} :
an=a+(n1)da4=2+(41)19 a4=2+(3×19)a4=2+13 a4=73 ................ Equation 1 \begin{aligned} & {{a}_{n}}=a+\left( n-1 \right)d\Rightarrow {{a}_{4}}=2+\left( 4-1 \right)\dfrac{1}{9} \\\ & {{a}_{4}}=2+\left( 3\times \dfrac{1}{9} \right)\Rightarrow {{a}_{4}}=2+\dfrac{1}{3} \\\ & {{a}_{4}}=\dfrac{7}{3}\text{ }................\text{ Equation 1} \\\ \end{aligned}

Now, it is given that h1,h2,h3..........h10{{h}_{1}},{{h}_{2}},{{h}_{3}}..........{{h}_{10}} is in harmonic progression which means that 1h1,1h2,1h3,............1hn\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},\dfrac{1}{{{h}_{3}}},............\dfrac{1}{{{h}_{n}}} is in A.P.
We also know that the nth term of the Harmonic Progression (H.P.) :
1hn=1a+(n1)d\dfrac{1}{{{h}_{n}}}=\dfrac{1}{a+\left( n-1 \right)d}
Where,
hn=nth{{h}_{n}}={{n}^{th}} term of the A.P.
a=a=first term ,
n=n= the total number of terms ,
d=d= common difference
To find the common difference we will apply this formula for h1=2{{h}_{1}}=2 and h10=3{{h}_{10}}=3, so we will apply the formula for nth{{n}^{th}} term, for n=10n=10 :
1h10=1h1+(101)dd=1h101h19 d=13129d=2369d=169 d=154 \begin{aligned} & \Rightarrow \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+\left( 10-1 \right)d\Rightarrow d=\dfrac{\dfrac{1}{{{h}_{10}}}-\dfrac{1}{{{h}_{1}}}}{9} \\\ & \Rightarrow d=\dfrac{\dfrac{1}{3}-\dfrac{1}{2}}{9}\Rightarrow d=\dfrac{\dfrac{2-3}{6}}{9}\Rightarrow d=\dfrac{\dfrac{-1}{6}}{9} \\\ & \Rightarrow d=\dfrac{-1}{54} \\\ \end{aligned}
Now to find the value of h7{{h}_{7}}, we will apply the formula for an{{a}_{n}} for n=7n=7 , a=1h1=12a=\dfrac{1}{{{h}_{1}}}=\dfrac{1}{2} and d=154d=\dfrac{-1}{54} :
an=a+(n1)d1h7=1h1+(71)(154) 1h7=126(154)1h7=718 h7=187 ............... Equation 2 \begin{aligned} & {{a}_{n}}=a+\left( n-1 \right)d\Rightarrow \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+\left( 7-1 \right)\left( \dfrac{-1}{54} \right) \\\ & \dfrac{1}{{{h}_{7}}}=\dfrac{1}{2}-6\left( \dfrac{1}{54} \right)\Rightarrow \dfrac{1}{{{h}_{7}}}=\dfrac{7}{18} \\\ & {{h}_{7}}=\dfrac{18}{7}\text{ }...............\text{ Equation 2} \\\ \end{aligned}

Now to find out the value of a4h7{{a}_{4}}{{h}_{7}} we will put the values from equation 1 and equation 2 :
a4.h7=73×187=6 a4.h7=6 \begin{aligned} & {{a}_{4}}.{{h}_{7}}=\dfrac{7}{3}\times \dfrac{18}{7}=6 \\\ & {{a}_{4}}.{{h}_{7}}=6 \\\ \end{aligned}

So, the correct option is D.

Note : Students can make mistakes while applying the formula for nth{{n}^{th}} term for the harmonic progression as the values are in harmonic progression. The formula is the same for the arithmetic progression and the sequence in harmonic progression as the reciprocals are in AP.