Question
Question: A 0.2g sample of benzoic acid \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] is tit...
A 0.2g sample of benzoic acid C6H5COOH is titrated with a 0.120M Ba(OH)2solution. What volume of the Ba(OH)2solution is required to reach the equivalence point?
Molar mass of C6H5COOH = 122.1gmol−1
A. 6.82 ml
B. 13.6 ml
C. 17.6 ml
D. 35.2 ml
Solution
Write the balanced acid-base reaction between C6H5COOH and Ba(OH)2. Calculate the moles of benzoic acid and then using the stoichiometric ratio, calculate the moles of Ba(OH)2. Finally using the moles and molar concentration of Ba(OH)2 , calculate the volume of it.
Formula Used:
Moles = Molar massmass
Molarity = L of solution moles
Complete step by step answer:
The balanced acid-base reaction between C6H5COOH and Ba(OH)2 is as follows:
2C6H5COOH (aq) + Ba(OH)2(aq) ⇌ Ba(C6H5COO)2(aq) + 2H2O(l)
Now, using the mass and molar mass of C6H5COOH given to us calculate the moles of C6H5COOH.
Moles = Molar massmass
Substitute 0.2g for the mass of C6H5COOH and 122.1 gmol - 1 for molar mass of C6H5COOH and calculate the moles of C6H5COOH as follows:
Moles = 122.1 gmol - 10.2 g=0.00163 mol
Now, using these moles of C6H5COOH and balanced chemical reaction calculate the moles of Ba(OH)2 at as follows:
From the balanced reaction, we can say that 2 moles of C6H5COOH reacts with 1 mole of Ba(OH)2.
So, 0.00163 mol C6H5COOH×2 mol C6H5COOH 1 mol Ba(OH)2 =8.19×10 - 4 mol Ba(OH)2
Now, we have moles of Ba(OH)2 and also we have given molar concentration of Ba(OH)2.
Hence, calculate the volume of Ba(OH)2require to reach the equivalence point as follows:
Molarity = L of solution moles
Substitute 8.19×10 - 4 mol Ba(OH)2 and 0.120M Ba(OH)2 in the molarity equation and calculate the volume of Ba(OH)2require to reach the equivalence point.
Litres of Ba(OH)2 solution=0.00682 L
Convert the volume of Ba(OH)2 solution from L to ml.
1 L = 1000 ml
0.00682 L×1 L1000 ml=6.82 ml
Thus, 6.82 ml of Ba(OH)2 is required to reach the equivalence point.
**Hence, the correct option is (A) 6.82 ml
Note: **
Acid is a proton donor species and the base is a proton acceptor species. It is very important to write the correct balance reaction as a mole calculation depends on the stoichiometric ratio. From the balanced reaction, we can say that at the equivalence point 1 mole of Ba(OH)2 reacts with 2 moles ofC6H5COOH.