Solveeit Logo

Question

Question: A 0.2g sample of benzoic acid \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}\] is tit...

A 0.2g sample of benzoic acid C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} is titrated with a 0.120M Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}solution. What volume of the Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}solution is required to reach the equivalence point?
Molar mass of C6H5COOHC_6H_5COOH = 122.1gmol1122.1\, gmol^{-1}
A. 6.82 ml
B. 13.6 ml
C. 17.6 ml
D. 35.2 ml

Explanation

Solution

Write the balanced acid-base reaction between C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} and Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}. Calculate the moles of benzoic acid and then using the stoichiometric ratio, calculate the moles of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}. Finally using the moles and molar concentration of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} , calculate the volume of it.

Formula Used:
Moles = massMolar mass{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}
Molarity =  moles  L of solution{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}

Complete step by step answer:
The balanced acid-base reaction between C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} and Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} is as follows:
2C6H5COOH (aq) + Ba(OH)2(aq)  Ba(C6H5COO)2(aq) + 2H2O(l){\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH (aq) + Ba(OH}}{{\text{)}}_{\text{2}}}{\text{(aq) }} \rightleftharpoons {\text{ Ba(}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COO}}{)_2}({\text{aq) + 2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}
Now, using the mass and molar mass of C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} given to us calculate the moles of C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}.
Moles = massMolar mass{\text{Moles = }}\dfrac{{{\text{mass}}}}{{{\text{Molar mass}}}}
Substitute 0.2g for the mass of C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} and 122.1 gmol - 1122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}} for molar mass of C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} and calculate the moles of C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} as follows:
Moles = 0.2 g122.1 gmol - 1=0.00163 mol{\text{Moles = }}\dfrac{{0.2{\text{ g}}}}{{122.1{\text{ gm}}{{\text{ol}}^{{\text{ - 1}}}}}} = 0.0{\text{0163 mol}}
Now, using these moles of C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} and balanced chemical reaction calculate the moles of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} at as follows:
From the balanced reaction, we can say that 2 moles of C6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} reacts with 1 mole of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}.
So, 0.00163 mol C6H5COOH×1 mol Ba(OH)2 2 mol C6H5COOH =8.19×10 - 4 mol Ba(OH)20.0{\text{0163 mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}} \times \dfrac{{1{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ }}}}{{2{\text{ mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH }}}} = 8.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}}
Now, we have moles of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} and also we have given molar concentration of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}.
Hence, calculate the volume of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}require to reach the equivalence point as follows:
Molarity =  moles  L of solution{\text{Molarity = }}\dfrac{{{\text{ moles }}}}{{{\text{ L of solution}}}}
Substitute 8.19×10 - 4 mol Ba(OH)28.19 \times {10^{{\text{ - 4}}}}{\text{ mol Ba(OH}}{{\text{)}}_{\text{2}}} and 0.120M Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} in the molarity equation and calculate the volume of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}}require to reach the equivalence point.
Litres of Ba(OH)2 solution=0.00682 L{\text{Litres of Ba(OH}}{{\text{)}}_{\text{2}}}{\text{ solution}} = 0.00682{\text{ L}}
Convert the volume of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} solution from L to ml.
1 L = 1000 ml
0.00682 L×1000 ml1 L=6.82 ml0.00682{\text{ L}} \times \dfrac{{1000{\text{ ml}}}}{{1{\text{ L}}}} = 6.82{\text{ ml}}
Thus, 6.82 ml of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} is required to reach the equivalence point.

**Hence, the correct option is (A) 6.82 ml

Note: **
Acid is a proton donor species and the base is a proton acceptor species. It is very important to write the correct balance reaction as a mole calculation depends on the stoichiometric ratio. From the balanced reaction, we can say that at the equivalence point 1 mole of Ba(OH)2{\text{Ba(OH}}{{\text{)}}_{\text{2}}} reacts with 2 moles ofC6H5COOH{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}.