Solveeit Logo

Question

Question: A 0.001 molal solution of \([Pt{(N{H_3})_4}C{l_4}]\) in water has a freezing point depression of \...

A 0.001 molal solution of [Pt(NH3)4Cl4][Pt{(N{H_3})_4}C{l_4}] in water has a freezing point depression of
0.0054C{0.0054^\circ }C. If Kf{K_f} for water is 1.80, the correct formulation of the above molecule is:
A. [Pt(NH3)4Cl3]Cl[Pt{(N{H_3})_4}C{l_3}]Cl
B. [Pt(NH3)4Cl2]Cl2[Pt{(N{H_3})_4}C{l_2}]C{l_2}
C. [Pt(NH3)4Cl2]Cl3[Pt{(N{H_3})_4}C{l_2}]C{l_3}
D. [Pt(NH3)4Cl4][Pt{(N{H_3})_4}C{l_4}]

Explanation

Solution

We will calculate the value of van't hoff factor, i from the Raoult's Law equation ΔTf=i×Kf×m\Delta {T_f} = i\times {K_f} \times m​. Then, we will see which complex from the option dissociates into the same number of ions in solution.

Complete step by step answer:
According to Raoul’s Law,
ΔTf=i×Kf×m\Delta {T_f} = i \times {K_f} \times m
\Rightarrow 0.0054=i×1.80×0.0010.0054 = i \times 1.80 \times 0.001
On solving,
\Rightarrow i=0.00541.800.001i = \dfrac{{0.0054}}{{1.80 - 0.001}}
\Rightarrow i=54×10418×101×103i = \dfrac{{54 \times {{10}^{ - 4}}}}{{18 \times {{10}^{ - 1}} \times {{10}^{ - 3}}}}
\Rightarrow i=3i = 3
Van't hoff factor, i=3i = 3
In the first option, when [Pt(NH3)4Cl2]Cl2[Pt{(N{H_3})_4}C{l_2}]C{l_2} dissociates in solution to produce 2 ions.
[Pt(NH3)4Cl3]Cl[Pt(NH3)4Cl3]++Cl[Pt{(N{H_3})_4}C{l_3}]Cl \to {[Pt{(N{H_3})_4}C{l_3}]^ + } + C{l^ - }
Total number of moles = 2, so this option is incorrect.
In the second option, 1 molecule of [Pt(NH3)4Cl2]Cl2[Pt{(N{H_3})_4}C{l_2}]C{l_2} dissociates in solution to produce
3 ions.
[Pt(NH3)4Cl2]Cl2[Pt(NH3)4Cl3]++2Cl[Pt{(N{H_3})_4}C{l_2}]C{l_2} \to {[Pt{(N{H_3})_4}C{l_3}]^ + } + 2C{l^ - }
So, total number of moles = 3, so this option is correct
In the third option, [Pt(NH3)4Cl2]Cl3[Pt{(N{H_3})_4}C{l_2}]C{l_3} will dissociate into,
[Pt(NH3)4Cl2]Cl3[Pt(NH3)4Cl3]++3Cl[Pt{(N{H_3})_4}C{l_2}]C{l_3} \to {[Pt{(N{H_3})_4}C{l_3}]^ + } + 3C{l^ - }
So, total number of moles = 4, so this option is also incorrect
In the last option, n=0n = 0 because [Pt(NH3)4Cl4][Pt{(N{H_3})_4}C{l_4}] is a coordination compounds that is chemically neutral complex in which only at least one ion is present as a complex.
Hence, the correct formula of the complex is [Pt(NH3)4Cl2]Cl2[Pt{(N{H_3})_4}C{l_2}]C{l_2}

Therefore, the correct answer is option (B).

Note: The given electrolyte, [Pt(NH3)4Cl4][Pt{(N{H_3})_4}C{l_4}] is strong. The relation of i and α\alpha is given by, [i=1+(n1)α]\left[ {i = 1 + \left( {n - 1} \right)\alpha } \right] So, for strong electrolyte α=1\alpha = 1. All ammonia is within the bracket because it is a strong field ligand.