Solveeit Logo

Question

Question: If for unit vectors $\hat{a}$, $\hat{b}$ and non-zero $\vec{c}$, $\hat{a}\times\hat{b}+\hat{a}=\vec{...

If for unit vectors a^\hat{a}, b^\hat{b} and non-zero c\vec{c}, a^×b^+a^=c\hat{a}\times\hat{b}+\hat{a}=\vec{c} and b^.c=0\hat{b}.\vec{c}=0, then volume of parallelopiped with coterminous edges a^\hat{a}, b^\hat{b} and c\vec{c} will be (in cu.units)-

A

-2

B

-1

C

0

D

4

E

6

F

4

G

1

H

12\frac{1}{2}

Answer

1

Explanation

Solution

The volume of the parallelopiped with coterminous edges a^\hat{a}, b^\hat{b} and c\vec{c} is given by the magnitude of the scalar triple product: V=[a^,b^,c]=a^(b^×c)V = |[\hat{a}, \hat{b}, \vec{c}]| = |\hat{a} \cdot (\hat{b} \times \vec{c})|.

We are given two conditions:

  1. a^×b^+a^=c\hat{a}\times\hat{b}+\hat{a}=\vec{c}
  2. b^.c=0\hat{b}.\vec{c}=0

Substitute the first equation into the second equation: b^(a^×b^+a^)=0\hat{b} \cdot (\hat{a}\times\hat{b}+\hat{a}) = 0

Using the distributive property of the dot product: b^(a^×b^)+b^a^=0\hat{b} \cdot (\hat{a}\times\hat{b}) + \hat{b} \cdot \hat{a} = 0

The term b^(a^×b^)\hat{b} \cdot (\hat{a}\times\hat{b}) is a scalar triple product with two identical vectors (b^\hat{b}), so its value is 0. This is because a^×b^\hat{a}\times\hat{b} is a vector perpendicular to both a^\hat{a} and b^\hat{b}, so its dot product with b^\hat{b} is 0.

Thus, the equation simplifies to: 0+b^a^=00 + \hat{b} \cdot \hat{a} = 0 b^a^=0\hat{b} \cdot \hat{a} = 0

Since a^b^=b^a^\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{a}, we have a^b^=0\hat{a} \cdot \hat{b} = 0.

This implies that the unit vectors a^\hat{a} and b^\hat{b} are orthogonal (perpendicular).

Now, let's calculate the volume V=a^(b^×c)V = |\hat{a} \cdot (\hat{b} \times \vec{c})|.

Substitute c=a^×b^+a^\vec{c} = \hat{a}\times\hat{b}+\hat{a} into the expression for the volume: V=a^(b^×(a^×b^+a^))V = |\hat{a} \cdot (\hat{b} \times (\hat{a}\times\hat{b}+\hat{a}))|

Using the distributive property of the cross product: V=a^(b^×(a^×b^)+b^×a^)V = |\hat{a} \cdot (\hat{b} \times (\hat{a}\times\hat{b}) + \hat{b} \times \hat{a})|

Let's evaluate the terms inside the dot product:

The vector triple product b^×(a^×b^)\hat{b} \times (\hat{a}\times\hat{b}) can be expanded using the formula A×(B×C)=(AC)B(AB)C\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{A} \cdot \vec{B})\vec{C}: b^×(a^×b^)=(b^b^)a^(b^a^)b^\hat{b} \times (\hat{a}\times\hat{b}) = (\hat{b} \cdot \hat{b})\hat{a} - (\hat{b} \cdot \hat{a})\hat{b}

Since b^\hat{b} is a unit vector, b^b^=b^2=12=1\hat{b} \cdot \hat{b} = |\hat{b}|^2 = 1^2 = 1. We found that a^b^=0\hat{a} \cdot \hat{b} = 0. So, b^×(a^×b^)=(1)a^(0)b^=a^\hat{b} \times (\hat{a}\times\hat{b}) = (1)\hat{a} - (0)\hat{b} = \hat{a}.

The second term is b^×a^\hat{b} \times \hat{a}. Using the property of cross product, b^×a^=(a^×b^)\hat{b} \times \hat{a} = -(\hat{a} \times \hat{b}).

Substitute these back into the volume expression: V=a^(a^+(a^×b^))V = |\hat{a} \cdot (\hat{a} + (-\hat{a} \times \hat{b}))| V=a^(a^a^×b^)V = |\hat{a} \cdot (\hat{a} - \hat{a} \times \hat{b})|

Using the distributive property of the dot product: V=a^a^a^(a^×b^)V = |\hat{a} \cdot \hat{a} - \hat{a} \cdot (\hat{a} \times \hat{b})|

Evaluate the terms:

a^a^=a^2\hat{a} \cdot \hat{a} = |\hat{a}|^2. Since a^\hat{a} is a unit vector, a^=1|\hat{a}| = 1, so a^a^=12=1\hat{a} \cdot \hat{a} = 1^2 = 1. a^(a^×b^)\hat{a} \cdot (\hat{a} \times \hat{b}) is a scalar triple product with two identical vectors (a^\hat{a}), so its value is 0.

Substitute these values back into the expression for VV: V=10V = |1 - 0| V=1V = |1| V=1V = 1

The volume of the parallelopiped is 1 cubic unit.