Solveeit Logo

Question

Question: If the volume of a tetrahedron whose conterminous edges are $\bar{a} + \bar{b}$, $\bar{b} + \bar{c}$...

If the volume of a tetrahedron whose conterminous edges are aˉ+bˉ\bar{a} + \bar{b}, bˉ+cˉ\bar{b} + \bar{c}, cˉ+aˉ\bar{c} + \bar{a} is 24 cubic units then the volume of parallelopiped whose conterminous edges are aˉ\bar{a}, bˉ\bar{b}, cˉ\bar{c} is

A

48 cubic units

B

144 cubic units

C

72 cubic units

D

10 cubic units

Answer

72 cubic units

Explanation

Solution

The volume of a tetrahedron with conterminous edges aˉ+bˉ\bar{a} + \bar{b}, bˉ+cˉ\bar{b} + \bar{c}, and cˉ+aˉ\bar{c} + \bar{a} is given as 24 cubic units.

The volume VtV_t of a tetrahedron formed by vectors uˉ\bar{u}, vˉ\bar{v}, and wˉ\bar{w} is:

Vt=16uˉ(vˉ×wˉ)V_t = \frac{1}{6} | \bar{u} \cdot (\bar{v} \times \bar{w}) |

In this case, uˉ=aˉ+bˉ\bar{u} = \bar{a} + \bar{b}, vˉ=bˉ+cˉ\bar{v} = \bar{b} + \bar{c}, and wˉ=cˉ+aˉ\bar{w} = \bar{c} + \bar{a}. Thus,

Vt=16(aˉ+bˉ)((bˉ+cˉ)×(cˉ+aˉ))V_t = \frac{1}{6} | (\bar{a} + \bar{b}) \cdot ((\bar{b} + \bar{c}) \times (\bar{c} + \bar{a})) |

Expanding the cross product and dot product:

(bˉ+cˉ)×(cˉ+aˉ)=bˉ×cˉ+bˉ×aˉ+cˉ×cˉ+cˉ×aˉ=bˉ×cˉ+bˉ×aˉ+cˉ×aˉ(\bar{b} + \bar{c}) \times (\bar{c} + \bar{a}) = \bar{b} \times \bar{c} + \bar{b} \times \bar{a} + \bar{c} \times \bar{c} + \bar{c} \times \bar{a} = \bar{b} \times \bar{c} + \bar{b} \times \bar{a} + \bar{c} \times \bar{a} (aˉ+bˉ)(bˉ×cˉ+bˉ×aˉ+cˉ×aˉ)=aˉ(bˉ×cˉ)+aˉ(bˉ×aˉ)+aˉ(cˉ×aˉ)+bˉ(bˉ×cˉ)+bˉ(bˉ×aˉ)+bˉ(cˉ×aˉ)(\bar{a} + \bar{b}) \cdot (\bar{b} \times \bar{c} + \bar{b} \times \bar{a} + \bar{c} \times \bar{a}) = \bar{a} \cdot (\bar{b} \times \bar{c}) + \bar{a} \cdot (\bar{b} \times \bar{a}) + \bar{a} \cdot (\bar{c} \times \bar{a}) + \bar{b} \cdot (\bar{b} \times \bar{c}) + \bar{b} \cdot (\bar{b} \times \bar{a}) + \bar{b} \cdot (\bar{c} \times \bar{a})

Since aˉ(bˉ×aˉ)=0\bar{a} \cdot (\bar{b} \times \bar{a}) = 0, aˉ(cˉ×aˉ)=0\bar{a} \cdot (\bar{c} \times \bar{a}) = 0, bˉ(bˉ×cˉ)=0\bar{b} \cdot (\bar{b} \times \bar{c}) = 0, and bˉ(bˉ×aˉ)=0\bar{b} \cdot (\bar{b} \times \bar{a}) = 0, we have:

(aˉ+bˉ)((bˉ+cˉ)×(cˉ+aˉ))=aˉ(bˉ×cˉ)+bˉ(cˉ×aˉ)=aˉ(bˉ×cˉ)+aˉ(bˉ×cˉ)=2[aˉ(bˉ×cˉ)](\bar{a} + \bar{b}) \cdot ((\bar{b} + \bar{c}) \times (\bar{c} + \bar{a})) = \bar{a} \cdot (\bar{b} \times \bar{c}) + \bar{b} \cdot (\bar{c} \times \bar{a}) = \bar{a} \cdot (\bar{b} \times \bar{c}) + \bar{a} \cdot (\bar{b} \times \bar{c}) = 2 [\bar{a} \cdot (\bar{b} \times \bar{c})]

So, Vt=162[aˉ(bˉ×cˉ)]=13aˉ(bˉ×cˉ)=24V_t = \frac{1}{6} | 2 [\bar{a} \cdot (\bar{b} \times \bar{c})] | = \frac{1}{3} | \bar{a} \cdot (\bar{b} \times \bar{c}) | = 24.

Therefore, aˉ(bˉ×cˉ)=3×24=72| \bar{a} \cdot (\bar{b} \times \bar{c}) | = 3 \times 24 = 72.

The volume of the parallelepiped VpV_p formed by vectors aˉ\bar{a}, bˉ\bar{b}, and cˉ\bar{c} is given by:

Vp=aˉ(bˉ×cˉ)V_p = | \bar{a} \cdot (\bar{b} \times \bar{c}) |

Thus, the volume of the parallelepiped is 72 cubic units.