Solveeit Logo

Question

Question: Moment of force F = 3i - 3j acting at R (0, 1, 1) about A (0, 1, 0) is...

Moment of force F = 3i - 3j acting at R (0, 1, 1) about A (0, 1, 0) is

A

-i-3j

B

3i+3j

C

3j

D

none of these

Answer

3i+3j

Explanation

Solution

To find the moment of a force F\vec{F} about a point AA, we use the formula M=r×F\vec{M} = \vec{r} \times \vec{F}, where r\vec{r} is the position vector from AA to the point of application of the force RR.

Given:

  • Force, F=3i^3j^\vec{F} = 3\hat{i} - 3\hat{j}
  • Point R(0,1,1)R(0,1,1)
  • Reference point A(0,1,0)A(0,1,0)

Step 1: Find the position vector r\vec{r} from AA to RR: r=RA=(00,11,10)=(0,0,1)\vec{r} = \vec{R} - \vec{A} = (0-0, 1-1, 1-0) = (0, 0, 1)

Step 2: Compute the moment M\vec{M} of force about point AA using the cross product: M=r×F\vec{M} = \vec{r} \times \vec{F} M=(0,0,1)×(3,3,0)\vec{M} = (0, 0, 1) \times (3, -3, 0)

Using the cross product formula: M=(001(3),1300,0(3)03)=(3,3,0)\vec{M} = (0 \cdot 0 - 1 \cdot (-3), 1 \cdot 3 - 0 \cdot 0, 0 \cdot (-3) - 0 \cdot 3) = (3, 3, 0)

Thus, the moment is: M=3i^+3j^\vec{M} = 3\hat{i} + 3\hat{j}