Question
Question: If $V_1, V_2$ are two orthogonal unit vectors and $V_3 = V_1 \times V_2$ then...
If V1,V2 are two orthogonal unit vectors and V3=V1×V2 then
A
V1V2+V2V2+V3V3=0
B
V1V2+V2V3+V3V1=3
C
V1V2+V2V3+V3V1=0
D
V1V2+V2V3+V3V1=1
Answer
Option c) is correct.
Explanation
Solution
Given:
- V1 and V2 are orthogonal unit vectors so that V1⋅V1=1,V2⋅V2=1,V1⋅V2=0.
- Let V3=V1×V2. Then, V3 is a unit vector orthogonal to both, so V1⋅V3=0,V2⋅V3=0.
Checking each option:
-
Option a): V1V2+V2V2+V3V3
Interpreting juxtaposed vectors as dot products:
V1⋅V2+V2⋅V2+V3⋅V3=0+1+1=2=0.So, option a) is false.
-
Option c): V1V2+V2V3+V3V1
Evaluating:
V1⋅V2+V2⋅V3+V3⋅V1=0+0+0=0.So, option c) is true.
-
Options b) and d) provide sums 3 and 1 respectively for the same expression as in option c), hence they are false.