Solveeit Logo

Question

Question: A light source of 5000Å wavelength produces a single slit diffraction. The first minima in diffracti...

A light source of 5000Å wavelength produces a single slit diffraction. The first minima in diffraction pattern is seen, at a distance of 5mm from central maxima. The distance between screen and slit is 2 metre. The width of slit in mm will be :

A

0.1

B

0.2

C

0.4

D

2

Answer

0.2

Explanation

Solution

The problem involves single-slit diffraction. The position of the minima in a single-slit diffraction pattern is given by the formula:

xn=nλDax_n = \frac{n \lambda D}{a}

where:

xnx_n is the distance of the nth minima from the central maxima

nn is the order of the minima (n = 1 for the first minima, n = 2 for the second minima, etc.)

λ\lambda is the wavelength of light

DD is the distance between the slit and the screen

aa is the width of the slit

Given values:

Wavelength of light, λ=5000 A˚=5000×1010 m=5×107 m\lambda = 5000 \text{ Å} = 5000 \times 10^{-10} \text{ m} = 5 \times 10^{-7} \text{ m}

Distance of the first minima from the central maxima, x1=5 mm=5×103 mx_1 = 5 \text{ mm} = 5 \times 10^{-3} \text{ m}

Distance between the screen and the slit, D=2 metre=2 mD = 2 \text{ metre} = 2 \text{ m}

For the first minima, n=1n = 1.

We need to find the width of the slit, aa. Rearranging the formula for n=1n=1:

x1=1λDax_1 = \frac{1 \cdot \lambda D}{a}

a=λDx1a = \frac{\lambda D}{x_1}

Substitute the given values into the formula:

a=(5×107 m)×(2 m)(5×103 m)a = \frac{(5 \times 10^{-7} \text{ m}) \times (2 \text{ m})}{(5 \times 10^{-3} \text{ m})}

a=10×1075×103a = \frac{10 \times 10^{-7}}{5 \times 10^{-3}}

a=2×107×103a = 2 \times 10^{-7} \times 10^{3}

a=2×104 ma = 2 \times 10^{-4} \text{ m}

The question asks for the width of the slit in millimeters (mm). Convert meters to millimeters:

1 m=1000 mm1 \text{ m} = 1000 \text{ mm}

a=2×104 m×1000 mm1 ma = 2 \times 10^{-4} \text{ m} \times \frac{1000 \text{ mm}}{1 \text{ m}}

a=2×104×103 mma = 2 \times 10^{-4} \times 10^{3} \text{ mm}

a=2×101 mma = 2 \times 10^{-1} \text{ mm}

a=0.2 mma = 0.2 \text{ mm}