Solveeit Logo

Question

Question: Let $a = \sum_{r=1}^{\infty} \frac{1}{r^2}$ and $b = \sum_{r=1}^{\infty} \frac{1}{(2r-1)^2}$. Then t...

Let a=r=11r2a = \sum_{r=1}^{\infty} \frac{1}{r^2} and b=r=11(2r1)2b = \sum_{r=1}^{\infty} \frac{1}{(2r-1)^2}. Then the value of 3ab\frac{3a}{b} is equal to:

A

2

B

3

C

4

D

6

Answer

4

Explanation

Solution

The given series are: a=r=11r2=112+122+132+142+a = \sum_{r=1}^{\infty} \frac{1}{r^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots b=r=11(2r1)2=112+132+152+b = \sum_{r=1}^{\infty} \frac{1}{(2r-1)^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots

We can express the series aa by separating terms with odd and even denominators: a=(112+132+152+)+(122+142+162+)a = \left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots\right) + \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots\right)

The first parenthesis is the series bb. The second parenthesis is the sum of reciprocals of squares of even numbers. This can be written as: r=11(2r)2=r=114r2=14r=11r2=14a\sum_{r=1}^{\infty} \frac{1}{(2r)^2} = \sum_{r=1}^{\infty} \frac{1}{4r^2} = \frac{1}{4} \sum_{r=1}^{\infty} \frac{1}{r^2} = \frac{1}{4}a Substituting these back into the expression for aa: a=b+14aa = b + \frac{1}{4}a Rearranging the equation to solve for bb: b=a14a=34ab = a - \frac{1}{4}a = \frac{3}{4}a We are asked to find the value of 3ab\frac{3a}{b}. Substitute the expression for bb: 3ab=3a34a\frac{3a}{b} = \frac{3a}{\frac{3}{4}a} Since aa is a convergent series (a=π260a = \frac{\pi^2}{6} \neq 0), we can cancel aa from the numerator and denominator: 3ab=334=3×43=4\frac{3a}{b} = \frac{3}{\frac{3}{4}} = 3 \times \frac{4}{3} = 4