Question
Question: Which of the following option(s) is/are correct...
Which of the following option(s) is/are correct

16(cos²66° - sin²6°) (cos²48° - sin²12°) = 1
tan9° + tan36° + tan36° tan9° = 1
tan8° tan35° + tan8° tan47° + tan35°tan47° = 1
cos25°sin70°.sin85°+cos70°sin25°.sin85°+cos85°sin25°.sin70° = 1
A, B, C
Solution
The problem asks us to identify the correct option(s) among the given trigonometric expressions. We will evaluate each option individually.
Option (A): The expression is 16(cos266∘−sin26∘)(cos248∘−sin212∘). We use the trigonometric identity: cos2A−sin2B=cos(A+B)cos(A−B).
For the first term: cos266∘−sin26∘ Here, A=66∘ and B=6∘. So, cos266∘−sin26∘=cos(66∘+6∘)cos(66∘−6∘)=cos(72∘)cos(60∘).
For the second term: cos248∘−sin212∘ Here, A=48∘ and B=12∘. So, cos248∘−sin212∘=cos(48∘+12∘)cos(48∘−12∘)=cos(60∘)cos(36∘).
Substitute these back into the expression: 16[cos(72∘)cos(60∘)][cos(60∘)cos(36∘)] We know cos(60∘)=21. =16⋅cos(72∘)⋅21⋅21⋅cos(36∘) =16⋅41⋅cos(72∘)cos(36∘) =4cos(72∘)cos(36∘)
Now, we use the known values: cos(36∘)=45+1 cos(72∘)=45−1
Substitute these values: =4(45−1)(45+1) =4(16(5)2−12) =4(165−1) =4(164) =4⋅41=1 So, option (A) is correct.
Option (B): The expression is tan9∘+tan36∘+tan36∘tan9∘=1. Consider the identity for tan(A+B): tan(A+B)=1−tanAtanBtanA+tanB Rearranging this, we get: tanA+tanB=tan(A+B)(1−tanAtanB) tanA+tanB=tan(A+B)−tan(A+B)tanAtanB tanA+tanB+tan(A+B)tanAtanB=tan(A+B)
If A+B=45∘, then tan(A+B)=tan(45∘)=1. Substituting tan(A+B)=1 into the rearranged identity: tanA+tanB+1⋅tanAtanB=1 tanA+tanB+tanAtanB=1
In the given expression, A=9∘ and B=36∘. A+B=9∘+36∘=45∘. Since A+B=45∘, the identity tanA+tanB+tanAtanB=1 holds true. So, option (B) is correct.
Option (C): The expression is tan8∘tan35∘+tan8∘tan47∘+tan35∘tan47∘=1. Consider the identity for tan(A+B+C): tan(A+B+C)=1−(tanAtanB+tanBtanC+tanCtanA)tanA+tanB+tanC−tanAtanBtanC
If A+B+C=90∘, then tan(A+B+C) is undefined. This implies that the denominator must be zero. 1−(tanAtanB+tanBtanC+tanCtanA)=0 tanAtanB+tanBtanC+tanCtanA=1
In the given expression, A=8∘, B=35∘, and C=47∘. A+B+C=8∘+35∘+47∘=90∘. Since A+B+C=90∘, the identity tanAtanB+tanBtanC+tanCtanA=1 holds true. So, option (C) is correct.
Option (D): The expression is cos25∘sin70∘sin85∘+cos70∘sin25∘sin85∘+cos85∘sin25∘sin70∘=1. Let A=25∘, B=70∘, C=85∘. Note that A+B+C=25∘+70∘+85∘=180∘. This means A, B, C are angles of a triangle. In a triangle, cosA=cos(180∘−(B+C))=−cos(B+C). Similarly, cosB=−cos(A+C) and cosC=−cos(A+B).
The expression can be written as: cosAsinBsinC+cosBsinAsinC+cosCsinAsinB =−cos(B+C)sinBsinC+−cos(A+C)sinAsinC+−cos(A+B)sinAsinB
Let's test with a simpler case, e.g., an equilateral triangle where A=B=C=60∘. cos60∘=1/2, sin60∘=3/2. The expression becomes: 3×cos60∘sin60∘sin60∘=3×1/2(3/2)(3/2) =3×1/23/4=3×43×2=3×23=29. Since 9/2=1, the identity does not hold true in general for a triangle, and therefore not for the given angles. So, option (D) is incorrect.
Based on the analysis, options (A), (B), and (C) are correct.