Solveeit Logo

Question

Question: Which of the following option(s) is/are correct...

Which of the following option(s) is/are correct

A

16(cos²66° - sin²6°) (cos²48° - sin²12°) = 1

B

tan9° + tan36° + tan36° tan9° = 1

C

tan8° tan35° + tan8° tan47° + tan35°tan47° = 1

D

sin70°.sin85°cos25°+sin25°.sin85°cos70°+sin25°.sin70°cos85°\frac{sin 70°. sin 85°}{cos 25°} + \frac{sin 25°.sin 85°}{cos 70°} + \frac{sin 25°. sin 70°}{cos 85°} = 1

Answer

A, B, C

Explanation

Solution

The problem asks us to identify the correct option(s) among the given trigonometric expressions. We will evaluate each option individually.

Option (A): The expression is 16(cos266sin26)(cos248sin212)16(\cos^266^\circ - \sin^26^\circ)(\cos^248^\circ - \sin^212^\circ). We use the trigonometric identity: cos2Asin2B=cos(A+B)cos(AB)\cos^2A - \sin^2B = \cos(A+B)\cos(A-B).

For the first term: cos266sin26\cos^266^\circ - \sin^26^\circ Here, A=66A=66^\circ and B=6B=6^\circ. So, cos266sin26=cos(66+6)cos(666)=cos(72)cos(60)\cos^266^\circ - \sin^26^\circ = \cos(66^\circ+6^\circ)\cos(66^\circ-6^\circ) = \cos(72^\circ)\cos(60^\circ).

For the second term: cos248sin212\cos^248^\circ - \sin^212^\circ Here, A=48A=48^\circ and B=12B=12^\circ. So, cos248sin212=cos(48+12)cos(4812)=cos(60)cos(36)\cos^248^\circ - \sin^212^\circ = \cos(48^\circ+12^\circ)\cos(48^\circ-12^\circ) = \cos(60^\circ)\cos(36^\circ).

Substitute these back into the expression: 16[cos(72)cos(60)][cos(60)cos(36)]16[\cos(72^\circ)\cos(60^\circ)][\cos(60^\circ)\cos(36^\circ)] We know cos(60)=12\cos(60^\circ) = \frac{1}{2}. =16cos(72)1212cos(36)= 16 \cdot \cos(72^\circ) \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \cos(36^\circ) =1614cos(72)cos(36)= 16 \cdot \frac{1}{4} \cdot \cos(72^\circ)\cos(36^\circ) =4cos(72)cos(36)= 4 \cos(72^\circ)\cos(36^\circ)

Now, we use the known values: cos(36)=5+14\cos(36^\circ) = \frac{\sqrt{5}+1}{4} cos(72)=514\cos(72^\circ) = \frac{\sqrt{5}-1}{4}

Substitute these values: =4(514)(5+14)= 4 \left( \frac{\sqrt{5}-1}{4} \right) \left( \frac{\sqrt{5}+1}{4} \right) =4((5)21216)= 4 \left( \frac{(\sqrt{5})^2 - 1^2}{16} \right) =4(5116)= 4 \left( \frac{5 - 1}{16} \right) =4(416)= 4 \left( \frac{4}{16} \right) =414=1= 4 \cdot \frac{1}{4} = 1 So, option (A) is correct.

Option (B): The expression is tan9+tan36+tan36tan9=1\tan9^\circ + \tan36^\circ + \tan36^\circ \tan9^\circ = 1. Consider the identity for tan(A+B)\tan(A+B): tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} Rearranging this, we get: tanA+tanB=tan(A+B)(1tanAtanB)\tan A + \tan B = \tan(A+B)(1 - \tan A \tan B) tanA+tanB=tan(A+B)tan(A+B)tanAtanB\tan A + \tan B = \tan(A+B) - \tan(A+B)\tan A \tan B tanA+tanB+tan(A+B)tanAtanB=tan(A+B)\tan A + \tan B + \tan(A+B)\tan A \tan B = \tan(A+B)

If A+B=45A+B = 45^\circ, then tan(A+B)=tan(45)=1\tan(A+B) = \tan(45^\circ) = 1. Substituting tan(A+B)=1\tan(A+B) = 1 into the rearranged identity: tanA+tanB+1tanAtanB=1\tan A + \tan B + 1 \cdot \tan A \tan B = 1 tanA+tanB+tanAtanB=1\tan A + \tan B + \tan A \tan B = 1

In the given expression, A=9A=9^\circ and B=36B=36^\circ. A+B=9+36=45A+B = 9^\circ + 36^\circ = 45^\circ. Since A+B=45A+B=45^\circ, the identity tanA+tanB+tanAtanB=1\tan A + \tan B + \tan A \tan B = 1 holds true. So, option (B) is correct.

Option (C): The expression is tan8tan35+tan8tan47+tan35tan47=1\tan8^\circ \tan35^\circ + \tan8^\circ \tan47^\circ + \tan35^\circ\tan47^\circ = 1. Consider the identity for tan(A+B+C)\tan(A+B+C): tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1(tanAtanB+tanBtanC+tanCtanA)\tan(A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}

If A+B+C=90A+B+C = 90^\circ, then tan(A+B+C)\tan(A+B+C) is undefined. This implies that the denominator must be zero. 1(tanAtanB+tanBtanC+tanCtanA)=01 - (\tan A \tan B + \tan B \tan C + \tan C \tan A) = 0 tanAtanB+tanBtanC+tanCtanA=1\tan A \tan B + \tan B \tan C + \tan C \tan A = 1

In the given expression, A=8A=8^\circ, B=35B=35^\circ, and C=47C=47^\circ. A+B+C=8+35+47=90A+B+C = 8^\circ + 35^\circ + 47^\circ = 90^\circ. Since A+B+C=90A+B+C=90^\circ, the identity tanAtanB+tanBtanC+tanCtanA=1\tan A \tan B + \tan B \tan C + \tan C \tan A = 1 holds true. So, option (C) is correct.

Option (D): The expression is sin70sin85cos25+sin25sin85cos70+sin25sin70cos85=1\frac{\sin 70^\circ \sin 85^\circ}{\cos 25^\circ} + \frac{\sin 25^\circ \sin 85^\circ}{\cos 70^\circ} + \frac{\sin 25^\circ \sin 70^\circ}{\cos 85^\circ} = 1. Let A=25A=25^\circ, B=70B=70^\circ, C=85C=85^\circ. Note that A+B+C=25+70+85=180A+B+C = 25^\circ+70^\circ+85^\circ = 180^\circ. This means A, B, C are angles of a triangle. In a triangle, cosA=cos(180(B+C))=cos(B+C)\cos A = \cos(180^\circ - (B+C)) = -\cos(B+C). Similarly, cosB=cos(A+C)\cos B = -\cos(A+C) and cosC=cos(A+B)\cos C = -\cos(A+B).

The expression can be written as: sinBsinCcosA+sinAsinCcosB+sinAsinBcosC\frac{\sin B \sin C}{\cos A} + \frac{\sin A \sin C}{\cos B} + \frac{\sin A \sin B}{\cos C} =sinBsinCcos(B+C)+sinAsinCcos(A+C)+sinAsinBcos(A+B)= \frac{\sin B \sin C}{-\cos(B+C)} + \frac{\sin A \sin C}{-\cos(A+C)} + \frac{\sin A \sin B}{-\cos(A+B)}

Let's test with a simpler case, e.g., an equilateral triangle where A=B=C=60A=B=C=60^\circ. cos60=1/2\cos 60^\circ = 1/2, sin60=3/2\sin 60^\circ = \sqrt{3}/2. The expression becomes: 3×sin60sin60cos60=3×(3/2)(3/2)1/23 \times \frac{\sin 60^\circ \sin 60^\circ}{\cos 60^\circ} = 3 \times \frac{(\sqrt{3}/2)(\sqrt{3}/2)}{1/2} =3×3/41/2=3×34×2=3×32=92= 3 \times \frac{3/4}{1/2} = 3 \times \frac{3}{4} \times 2 = 3 \times \frac{3}{2} = \frac{9}{2}. Since 9/219/2 \neq 1, the identity does not hold true in general for a triangle, and therefore not for the given angles. So, option (D) is incorrect.

Based on the analysis, options (A), (B), and (C) are correct.