Solveeit Logo

Question

Question: Two identical positive point charges 'q' are placed on the x-axis at x = -a and x = +a respectively ...

Two identical positive point charges 'q' are placed on the x-axis at x = -a and x = +a respectively as shown. A point 'p' on the y-axis is chosen where the electric field has maximum strength E0E_0. Value of E0E_0 is

Answer

E_0 = \frac{4kq}{3\sqrt{3},a^2}.

Explanation

Solution

The net electric field at point P(0,y)P(0,y) due to two charges at (a,0)(a,0) and (a,0)(-a,0) is obtained by adding the vertical components because the horizontal components cancel. The field from one charge is

E=kqr2,with r=a2+y2,E = \frac{kq}{r^2},\quad \text{with } r = \sqrt{a^2+y^2},

and its vertical component is

Ey=kqy(a2+y2)3/2.E_y = \frac{kq\,y}{(a^2+y^2)^{3/2}}.

Thus, the total field is

Enet=2kqy(a2+y2)3/2.E_{\text{net}} = 2\,\frac{kq\,y}{(a^2+y^2)^{3/2}}.

To maximize EnetE_{\text{net}} with respect to yy, differentiate

f(y)=y(a2+y2)3/2f(y)=\frac{y}{(a^2+y^2)^{3/2}}

and set the derivative equal to zero:

ddy(y(a2+y2)3/2)=(a2+y2)3y2(a2+y2)5/2=0.\frac{d}{dy}\left(\frac{y}{(a^2+y^2)^{3/2}}\right)=\frac{(a^2+y^2)-3y^2}{(a^2+y^2)^{5/2}}=0.

This gives

a22y2=0y=a2.a^2 - 2y^2 = 0 \quad \Rightarrow \quad y = \frac{a}{\sqrt{2}}.

Substitute y=a2y = \frac{a}{\sqrt{2}} into the expression for EnetE_{\text{net}}:

E0=2kqa2(a2+a22)3/2=2kqa/2(3a22)3/2=2kqa/233/2a323/2.E_0 = 2\,\frac{kq\,\frac{a}{\sqrt{2}}}{\left(a^2+\frac{a^2}{2}\right)^{3/2}} = \frac{2kq\,a/\sqrt{2}}{\left(\frac{3a^2}{2}\right)^{3/2}} = \frac{2kq\,a/\sqrt{2}}{\frac{3^{3/2}a^3}{2^{3/2}}}.

Simplify:

E0=2kqa223/233/2a3=2kqa22233/2a3=4kq33/2a2=4kq33a2.E_0 = \frac{2kq\,a}{\sqrt{2}} \cdot \frac{2^{3/2}}{3^{3/2}a^3} = \frac{2kq\,a\cdot 2\sqrt{2}}{\sqrt{2}\,3^{3/2}a^3} = \frac{4kq}{3^{3/2}a^2} = \frac{4kq}{3\sqrt{3}\,a^2}.