Solveeit Logo

Question

Question: The value of the integral $\int_{0}^{12}\sqrt{x+\sqrt{x+\sqrt{x+...\infty}}}\ dx$ is...

The value of the integral 012x+x+x+... dx\int_{0}^{12}\sqrt{x+\sqrt{x+\sqrt{x+...\infty}}}\ dx is

A

12ln6+37x2x21dx\frac{1}{2}ln6+\int_{3}^{7}\frac{x^2}{x^2-1}dx

B

12ln6+37xx2+1dx\frac{1}{2}ln6+\int_{3}^{7}\frac{x}{x^2+1}dx

C

12ln6+37x2x21dx\frac{1}{2}ln6+\int_{3}^{7}\frac{x^2}{x^2-1}dx

D

12ln6+37x2x2+1dx\frac{1}{2}ln6+\int_{3}^{7}\frac{x^2}{x^2+1}dx

Answer

692\frac{69}{2}. None of the options match

Explanation

Solution

To evaluate the integral 012x+x+x+... dx\int_{0}^{12}\sqrt{x+\sqrt{x+\sqrt{x+...\infty}}}\ dx, we first need to simplify the expression inside the integral.

Let y=x+x+x+...y = \sqrt{x+\sqrt{x+\sqrt{x+...\infty}}}. This is an infinite nested radical, which can be expressed as: y=x+yy = \sqrt{x + y}

Square both sides of the equation: y2=x+yy^2 = x + y

Rearrange the terms to form a quadratic equation in yy: y2yx=0y^2 - y - x = 0

Solve for yy using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a=1, b=1b=-1, and c=xc=-x: y=(1)±(1)24(1)(x)2(1)y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-x)}}{2(1)} y=1±1+4x2y = \frac{1 \pm \sqrt{1 + 4x}}{2}

Since yy represents a square root, it must be non-negative. For x0x \ge 0, 1+4x1\sqrt{1+4x} \ge 1. Therefore, 11+4x1 - \sqrt{1+4x} would be less than or equal to 0 (it is 0 only if x=0x=0, otherwise negative). Thus, we must choose the positive root: y=1+1+4x2y = \frac{1 + \sqrt{1 + 4x}}{2}

Now, substitute this expression for yy back into the integral: I=0121+1+4x2dxI = \int_{0}^{12} \frac{1 + \sqrt{1 + 4x}}{2} dx

We can factor out 12\frac{1}{2} and split the integral: I=12012(1+1+4x)dxI = \frac{1}{2} \int_{0}^{12} (1 + \sqrt{1 + 4x}) dx I=12[0121dx+0121+4xdx]I = \frac{1}{2} \left[ \int_{0}^{12} 1 \, dx + \int_{0}^{12} \sqrt{1 + 4x} \, dx \right]

Let's evaluate each integral separately:

  1. 0121dx=[x]012=120=12\int_{0}^{12} 1 \, dx = [x]_{0}^{12} = 12 - 0 = 12

  2. 0121+4xdx\int_{0}^{12} \sqrt{1 + 4x} \, dx To integrate this, use a substitution. Let u=1+4xu = 1 + 4x. Then du=4dxdu = 4 \, dx, which means dx=14dudx = \frac{1}{4} du. Change the limits of integration: When x=0x = 0, u=1+4(0)=1u = 1 + 4(0) = 1. When x=12x = 12, u=1+4(12)=1+48=49u = 1 + 4(12) = 1 + 48 = 49.

    The integral becomes: 149u1/214du=14149u1/2du\int_{1}^{49} u^{1/2} \frac{1}{4} du = \frac{1}{4} \int_{1}^{49} u^{1/2} du =14[u3/23/2]149= \frac{1}{4} \left[ \frac{u^{3/2}}{3/2} \right]_{1}^{49} =14[23u3/2]149= \frac{1}{4} \left[ \frac{2}{3} u^{3/2} \right]_{1}^{49} =16[u3/2]149= \frac{1}{6} [u^{3/2}]_{1}^{49} =16(493/213/2)= \frac{1}{6} (49^{3/2} - 1^{3/2}) =16((49)313)= \frac{1}{6} ((\sqrt{49})^3 - 1^3) =16(731)= \frac{1}{6} (7^3 - 1) =16(3431)= \frac{1}{6} (343 - 1) =16(342)= \frac{1}{6} (342) =57= 57

Now, substitute these results back into the expression for II: I=12[12+57]I = \frac{1}{2} [12 + 57] I=12[69]I = \frac{1}{2} [69] I=692I = \frac{69}{2}

Now we need to compare this value with the given options. The options are in the form of 12ln6+another integral\frac{1}{2}\ln6 + \text{another integral}. We will evaluate the integral part of each option and add it to 12ln6\frac{1}{2}\ln6 to see if it matches 692\frac{69}{2}.

Let's evaluate the integral 37x2x21dx\int_{3}^{7}\frac{x^2}{x^2-1}dx (common to options A and C): 37x2x21dx=37x21+1x21dx=37(1+1x21)dx\int_{3}^{7}\frac{x^2}{x^2-1}dx = \int_{3}^{7}\frac{x^2-1+1}{x^2-1}dx = \int_{3}^{7}\left(1 + \frac{1}{x^2-1}\right)dx Using partial fractions for 1x21\frac{1}{x^2-1}: 1x21=12(x1)12(x+1)\frac{1}{x^2-1} = \frac{1}{2(x-1)} - \frac{1}{2(x+1)} So, the integral is: [x+12lnx112lnx+1]37\left[x + \frac{1}{2}\ln|x-1| - \frac{1}{2}\ln|x+1|\right]_{3}^{7} =[x+12lnx1x+1]37= \left[x + \frac{1}{2}\ln\left|\frac{x-1}{x+1}\right|\right]_{3}^{7} =(7+12ln(717+1))(3+12ln(313+1))= \left(7 + \frac{1}{2}\ln\left(\frac{7-1}{7+1}\right)\right) - \left(3 + \frac{1}{2}\ln\left(\frac{3-1}{3+1}\right)\right) =(7+12ln(68))(3+12ln(24))= \left(7 + \frac{1}{2}\ln\left(\frac{6}{8}\right)\right) - \left(3 + \frac{1}{2}\ln\left(\frac{2}{4}\right)\right) =(7+12ln(34))(3+12ln(12))= \left(7 + \frac{1}{2}\ln\left(\frac{3}{4}\right)\right) - \left(3 + \frac{1}{2}\ln\left(\frac{1}{2}\right)\right) =4+12(ln(34)ln(12))= 4 + \frac{1}{2}\left(\ln\left(\frac{3}{4}\right) - \ln\left(\frac{1}{2}\right)\right) =4+12ln(3/41/2)=4+12ln(32)= 4 + \frac{1}{2}\ln\left(\frac{3/4}{1/2}\right) = 4 + \frac{1}{2}\ln\left(\frac{3}{2}\right)

Now, let's substitute this into options A and C: 12ln6+4+12ln(32)\frac{1}{2}\ln6 + 4 + \frac{1}{2}\ln\left(\frac{3}{2}\right) =4+12(ln6+ln(32))= 4 + \frac{1}{2}\left(\ln6 + \ln\left(\frac{3}{2}\right)\right) =4+12ln(632)= 4 + \frac{1}{2}\ln\left(6 \cdot \frac{3}{2}\right) =4+12ln(9)= 4 + \frac{1}{2}\ln(9) =4+12ln(32)= 4 + \frac{1}{2}\ln(3^2) =4+122ln3=4+ln3= 4 + \frac{1}{2} \cdot 2\ln3 = 4 + \ln3 Numerically, 4+ln34+1.0986=5.09864 + \ln3 \approx 4 + 1.0986 = 5.0986. This is not equal to 692=34.5\frac{69}{2} = 34.5. So options A and C are incorrect.

Let's evaluate the integral 37xx2+1dx\int_{3}^{7}\frac{x}{x^2+1}dx for option B: Let u=x2+1u = x^2+1, then du=2xdx    xdx=12dudu = 2x\,dx \implies x\,dx = \frac{1}{2}du. When x=3,u=32+1=10x=3, u=3^2+1=10. When x=7,u=72+1=50x=7, u=7^2+1=50. 10501u12du=12[lnu]1050\int_{10}^{50}\frac{1}{u}\frac{1}{2}du = \frac{1}{2}[\ln|u|]_{10}^{50} =12(ln50ln10)=12ln(5010)=12ln5= \frac{1}{2}(\ln50 - \ln10) = \frac{1}{2}\ln\left(\frac{50}{10}\right) = \frac{1}{2}\ln5 Now, substitute this into option B: 12ln6+12ln5=12(ln6+ln5)=12ln(65)=12ln30\frac{1}{2}\ln6 + \frac{1}{2}\ln5 = \frac{1}{2}(\ln6 + \ln5) = \frac{1}{2}\ln(6 \cdot 5) = \frac{1}{2}\ln30 Numerically, 12ln30123.401=1.7005\frac{1}{2}\ln30 \approx \frac{1}{2} \cdot 3.401 = 1.7005. This is not equal to 692=34.5\frac{69}{2} = 34.5. So option B is incorrect.

Let's evaluate the integral 37x2x2+1dx\int_{3}^{7}\frac{x^2}{x^2+1}dx for option D: 37x2x2+1dx=37x2+11x2+1dx=37(11x2+1)dx\int_{3}^{7}\frac{x^2}{x^2+1}dx = \int_{3}^{7}\frac{x^2+1-1}{x^2+1}dx = \int_{3}^{7}\left(1 - \frac{1}{x^2+1}\right)dx =[xarctanx]37= [x - \arctan x]_{3}^{7} =(7arctan7)(3arctan3)= (7 - \arctan7) - (3 - \arctan3) =4(arctan7arctan3)= 4 - (\arctan7 - \arctan3) Now, substitute this into option D: 12ln6+4(arctan7arctan3)\frac{1}{2}\ln6 + 4 - (\arctan7 - \arctan3) Numerically, arctan71.4289\arctan7 \approx 1.4289 rad, arctan31.2490\arctan3 \approx 1.2490 rad. So, 4(arctan7arctan3)4(1.42891.2490)=40.1799=3.82014 - (\arctan7 - \arctan3) \approx 4 - (1.4289 - 1.2490) = 4 - 0.1799 = 3.8201. Then, 12ln6+3.8201121.7917+3.8201=0.8958+3.8201=4.7159\frac{1}{2}\ln6 + 3.8201 \approx \frac{1}{2} \cdot 1.7917 + 3.8201 = 0.8958 + 3.8201 = 4.7159. This is not equal to 692=34.5\frac{69}{2} = 34.5. So option D is incorrect.

Since none of the options match the calculated value of the integral, there might be an issue with the question or the provided options. However, if forced to choose, and assuming there might be a typo in the options, the calculation for the main integral is robust.

The final answer is None of the options matched\boxed{\text{None of the options matched}}

The final answer is 692\frac{69}{2}.

The question provided contains options that do not match the calculated value of the integral. Based on the standard procedure for evaluating such integrals, the value is 692\frac{69}{2}.

The final answer is 692\frac{69}{2}. None of the options A, B, C, D evaluate to 692\frac{69}{2}. If we must choose one, it's possible there's a typo in the question's options.

The final answer is None of the options match\boxed{\text{None of the options match}}.

Explanation of the solution:

  1. Simplify the nested radical y=x+x+x+...y = \sqrt{x+\sqrt{x+\sqrt{x+...\infty}}} by setting y=x+yy = \sqrt{x+y}.
  2. Solve the quadratic equation y2yx=0y^2 - y - x = 0 for yy, choosing the positive root: y=1+1+4x2y = \frac{1 + \sqrt{1 + 4x}}{2}.
  3. Substitute this expression for yy into the integral: I=0121+1+4x2dxI = \int_{0}^{12} \frac{1 + \sqrt{1 + 4x}}{2} dx.
  4. Split the integral into two parts: 120121dx+120121+4xdx\frac{1}{2} \int_{0}^{12} 1 \, dx + \frac{1}{2} \int_{0}^{12} \sqrt{1 + 4x} \, dx.
  5. Evaluate the first part: 12[x]012=12(12)=6\frac{1}{2} [x]_{0}^{12} = \frac{1}{2} (12) = 6.
  6. Evaluate the second part using substitution u=1+4xu = 1+4x: 12149u1/214du=18[23u3/2]149=112(493/213/2)=112(3431)=34212=572\frac{1}{2} \int_{1}^{49} u^{1/2} \frac{1}{4} du = \frac{1}{8} \left[\frac{2}{3}u^{3/2}\right]_{1}^{49} = \frac{1}{12} (49^{3/2} - 1^{3/2}) = \frac{1}{12} (343 - 1) = \frac{342}{12} = \frac{57}{2}.
  7. Add the two parts: I=6+572=12+572=692I = 6 + \frac{57}{2} = \frac{12+57}{2} = \frac{69}{2}.
  8. Compare 692\frac{69}{2} with the given options. After evaluating each option, none of them match 692\frac{69}{2}.

The final answer is None of the options match\boxed{\text{None of the options match}}