Solveeit Logo

Question

Question: The thickness of a metallic tube is 1cm and the inner diameter of the tube is 12 cm. Find the weight...

The thickness of a metallic tube is 1cm and the inner diameter of the tube is 12 cm. Find the weight of 1 m long tube, if the density of the metal be 7.8 g/cm³.

Answer

The weight of the 1 m long tube is approximately 31.85kg31.85\,\text{kg}.

Explanation

Solution

Solution:

  1. Determine the radii:

    • Inner radius, ri=122=6r_i = \frac{12}{2} = 6 cm.
    • Outer radius, ro=6+1=7r_o = 6 + 1 = 7 cm (since thickness = 1 cm).
  2. Calculate cross-sectional area of the tube:

    A=π(ro2ri2)=π(7262)=π(4936)=13πcm2.A = \pi \left(r_o^2 - r_i^2\right) = \pi \left(7^2 - 6^2\right) = \pi (49 - 36) = 13\pi \, \text{cm}^2.
  3. Find the volume:

    • Convert the tube length to centimeters: 1m=100cm1\,\text{m} = 100\,\text{cm}.
    V=A×length=13π×100=1300πcm3.V = A \times \text{length} = 13\pi \times 100 = 1300\pi \, \text{cm}^3.
  4. Compute the weight (mass) using density:

    Mass=density×V=7.8g/cm3×1300πcm3=10140πg.\text{Mass} = \text{density} \times V = 7.8\,\text{g/cm}^3 \times 1300\pi\,\text{cm}^3 = 10140\pi\,\text{g}.

    Approximating:

    10140π10140×3.141631854g31.85kg.10140\pi \approx 10140 \times 3.1416 \approx 31854\,\text{g} \approx 31.85\,\text{kg}.

Core Explanation:

  • Use inner radius 66 cm; add thickness to get outer radius 77 cm.
  • Compute area: π(7262)=13π\pi(7^2-6^2)=13\pi cm².
  • Volume = 13π×100=1300π13\pi \times 100=1300\pi cm³.
  • Mass = density ×\times volume = 7.8×1300π=10140π7.8 \times 1300\pi = 10140\pi g ≈ 31.85 kg.