Solveeit Logo

Question

Question: Prove that $^{10}C_1(x-1)^2 - {^{10}C_2(x-2)^2} + {^{10}C_3(x-3)^2} + ... - {^{10}C_{10}(x-10)^2} = ...

Prove that 10C1(x1)210C2(x2)2+10C3(x3)2+...10C10(x10)2=x2^{10}C_1(x-1)^2 - {^{10}C_2(x-2)^2} + {^{10}C_3(x-3)^2} + ... - {^{10}C_{10}(x-10)^2} = x^2

Answer

The identity is proven to be true.

Explanation

Solution

The given identity is n=110(1)n110Cn(xn)2=x2\sum_{n=1}^{10} (-1)^{n-1} {^{10}C_n (x-n)^2} = x^2.

Expand (xn)2(x-n)^2 as x22nx+n2x^2 - 2nx + n^2. The sum becomes: S=n=110(1)n110Cn(x22nx+n2)S = \sum_{n=1}^{10} (-1)^{n-1} {^{10}C_n (x^2 - 2nx + n^2)} S=x2n=110(1)n110Cn2xn=110(1)n1n10Cn+n=110(1)n1n210CnS = x^2 \sum_{n=1}^{10} (-1)^{n-1} {^{10}C_n} - 2x \sum_{n=1}^{10} (-1)^{n-1} n {^{10}C_n} + \sum_{n=1}^{10} (-1)^{n-1} n^2 {^{10}C_n}

  1. First term: x2n=110(1)n110Cnx^2 \sum_{n=1}^{10} (-1)^{n-1} {^{10}C_n}. We know that n=010(1)n10Cn=(11)10=0\sum_{n=0}^{10} (-1)^n {^{10}C_n} = (1-1)^{10} = 0. So, 10C0n=110(1)n110Cn=0{^{10}C_0} - \sum_{n=1}^{10} (-1)^{n-1} {^{10}C_n} = 0. Since 10C0=1{^{10}C_0}=1, we get n=110(1)n110Cn=1\sum_{n=1}^{10} (-1)^{n-1} {^{10}C_n} = 1. The first term is x2×1=x2x^2 \times 1 = x^2.

  2. Second term: 2xn=110(1)n1n10Cn- 2x \sum_{n=1}^{10} (-1)^{n-1} n {^{10}C_n}. Using n10Cn=109Cn1n {^{10}C_n} = 10 {^{9}C_{n-1}}, the sum becomes 10n=110(1)n19Cn110 \sum_{n=1}^{10} (-1)^{n-1} {^{9}C_{n-1}}. Let k=n1k = n-1. The sum is 10k=09(1)k9Ck=10×(11)9=010 \sum_{k=0}^{9} (-1)^{k} {^{9}C_k} = 10 \times (1-1)^9 = 0. The second term is 2x×0=0-2x \times 0 = 0.

  3. Third term: n=110(1)n1n210Cn\sum_{n=1}^{10} (-1)^{n-1} n^2 {^{10}C_n}. Using n210Cn=10(k+1)9Ckn^2 {^{10}C_n} = 10(k+1) {^{9}C_k} where k=n1k=n-1. The sum is 10k=09(1)k(k+1)9Ck=10k=09(1)kk9Ck+10k=09(1)k9Ck10 \sum_{k=0}^{9} (-1)^{k} (k+1) {^{9}C_k} = 10 \sum_{k=0}^{9} (-1)^{k} k {^{9}C_k} + 10 \sum_{k=0}^{9} (-1)^{k} {^{9}C_k}. The first part is 10×0=010 \times 0 = 0 (using the identity for m1m \ge 1). The second part is 10×(11)9=010 \times (1-1)^9 = 0. The third term is 00.

Summing the terms: S=x2+0+0=x2S = x^2 + 0 + 0 = x^2. The identity is proven.