Solveeit Logo

Question

Question: |List-I|List-II| |---|---| |(I) The value of tan 20°. tan 40°. tan 60°. tan 80° is|(P) Odd natural| ...

List-IList-II
(I) The value of tan 20°. tan 40°. tan 60°. tan 80° is(P) Odd natural
(II) The value of 4(sin4π16+sin43π16+sin45π16+sin47π16)(sin^4 \frac{\pi}{16} + sin^4 \frac{3\pi}{16} + sin^4 \frac{5\pi}{16} + sin^4 \frac{7\pi}{16}) is(Q) Even natural
(III) tana + 2tan2a + 4tan4a + 8cot8a = λ\lambdacota then λ\lambda is(R) 3
(IV) (4 cos²9° -3) (4 cos²27° -3) = tank°, then k is(S) 6
(T) 1
(U) 9

Which of the following is CORRECT?

Answer

I-R, II-S, III-T, IV-U

Explanation

Solution

The problem requires us to evaluate four trigonometric expressions and match their results to the given options.

(I) The value of tan 20°. tan 40°. tan 60°. tan 80° is We use the trigonometric identity: tanθtan(60θ)tan(60+θ)=tan(3θ)\tan \theta \tan(60^\circ - \theta) \tan(60^\circ + \theta) = \tan(3\theta). Let θ=20\theta = 20^\circ. Then, tan20tan(6020)tan(60+20)=tan20tan40tan80\tan 20^\circ \tan(60^\circ - 20^\circ) \tan(60^\circ + 20^\circ) = \tan 20^\circ \tan 40^\circ \tan 80^\circ. According to the identity, this product is equal to tan(3×20)=tan60=3\tan(3 \times 20^\circ) = \tan 60^\circ = \sqrt{3}. The full expression is tan20tan40tan60tan80=(tan20tan40tan80)×tan60\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = (\tan 20^\circ \tan 40^\circ \tan 80^\circ) \times \tan 60^\circ. Substituting the values: 3×3=3\sqrt{3} \times \sqrt{3} = 3. So, (I) matches with (R).

(II) The value of 4(sin4π16+sin43π16+sin45π16+sin47π16)(sin^4 \frac{\pi}{16} + sin^4 \frac{3\pi}{16} + sin^4 \frac{5\pi}{16} + sin^4 \frac{7\pi}{16}) is Let's analyze the angles: 7π16=8ππ16=π2π16\frac{7\pi}{16} = \frac{8\pi - \pi}{16} = \frac{\pi}{2} - \frac{\pi}{16}. So, sin(7π16)=cos(π16)\sin(\frac{7\pi}{16}) = \cos(\frac{\pi}{16}). 5π16=8π3π16=π23π16\frac{5\pi}{16} = \frac{8\pi - 3\pi}{16} = \frac{\pi}{2} - \frac{3\pi}{16}. So, sin(5π16)=cos(3π16)\sin(\frac{5\pi}{16}) = \cos(\frac{3\pi}{16}). Substitute these into the expression: 4(sin4π16+sin43π16+cos43π16+cos4π16)4(\sin^4 \frac{\pi}{16} + \sin^4 \frac{3\pi}{16} + \cos^4 \frac{3\pi}{16} + \cos^4 \frac{\pi}{16}) Rearrange the terms: 4[(sin4π16+cos4π16)+(sin43π16+cos43π16)]4[(\sin^4 \frac{\pi}{16} + \cos^4 \frac{\pi}{16}) + (\sin^4 \frac{3\pi}{16} + \cos^4 \frac{3\pi}{16})] We use the identity sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x=112(2sinxcosx)2=112sin2(2x)\sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - \frac{1}{2}(2\sin x \cos x)^2 = 1 - \frac{1}{2}\sin^2(2x). For x=π16x = \frac{\pi}{16}: sin4π16+cos4π16=112sin2(2π16)=112sin2(π8)\sin^4 \frac{\pi}{16} + \cos^4 \frac{\pi}{16} = 1 - \frac{1}{2}\sin^2(\frac{2\pi}{16}) = 1 - \frac{1}{2}\sin^2(\frac{\pi}{8}). For x=3π16x = \frac{3\pi}{16}: sin43π16+cos43π16=112sin2(6π16)=112sin2(3π8)\sin^4 \frac{3\pi}{16} + \cos^4 \frac{3\pi}{16} = 1 - \frac{1}{2}\sin^2(\frac{6\pi}{16}) = 1 - \frac{1}{2}\sin^2(\frac{3\pi}{8}). Substitute these back: 4[(112sin2(π8))+(112sin2(3π8))]4[(1 - \frac{1}{2}\sin^2(\frac{\pi}{8})) + (1 - \frac{1}{2}\sin^2(\frac{3\pi}{8}))] 4[212(sin2(π8)+sin2(3π8))]4[2 - \frac{1}{2}(\sin^2(\frac{\pi}{8}) + \sin^2(\frac{3\pi}{8}))] 82(sin2(π8)+sin2(3π8))8 - 2(\sin^2(\frac{\pi}{8}) + \sin^2(\frac{3\pi}{8})) Now, notice that 3π8=4ππ8=π2π8\frac{3\pi}{8} = \frac{4\pi - \pi}{8} = \frac{\pi}{2} - \frac{\pi}{8}. So, sin(3π8)=cos(π8)\sin(\frac{3\pi}{8}) = \cos(\frac{\pi}{8}). Therefore, sin2(3π8)=cos2(π8)\sin^2(\frac{3\pi}{8}) = \cos^2(\frac{\pi}{8}). The expression becomes: 82(sin2(π8)+cos2(π8))8 - 2(\sin^2(\frac{\pi}{8}) + \cos^2(\frac{\pi}{8})) 82(1)8 - 2(1) (since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1) 82=68 - 2 = 6. So, (II) matches with (S).

(III) tana + 2tan2a + 4tan4a + 8cot8a = λ\lambdacota then λ\lambda is We use the identity: cotxtanx=2cot2x\cot x - \tan x = 2\cot 2x. This can be rearranged as tanx=cotx2cot2x\tan x = \cot x - 2\cot 2x. Let's simplify the given expression from right to left: Consider the term 8cot8a8\cot 8a. From the identity 2cot2x=cotxtanx2\cot 2x = \cot x - \tan x, let x=4ax=4a. Then 2cot8a=cot4atan4a2\cot 8a = \cot 4a - \tan 4a. So, 8cot8a=4(2cot8a)=4(cot4atan4a)8\cot 8a = 4(2\cot 8a) = 4(\cot 4a - \tan 4a). Substitute this into the expression: tana+2tan2a+4tan4a+4(cot4atan4a)tana + 2tan2a + 4tan4a + 4(\cot 4a - \tan 4a) =tana+2tan2a+4tan4a+4cot4a4tan4a= tana + 2tan2a + 4tan4a + 4\cot 4a - 4\tan 4a =tana+2tan2a+4cot4a= tana + 2tan2a + 4\cot 4a Now consider 4cot4a=2(2cot4a)4\cot 4a = 2(2\cot 4a). Let x=2ax=2a. 2cot4a=cot2atan2a2\cot 4a = \cot 2a - \tan 2a. So, 4cot4a=2(cot2atan2a)4\cot 4a = 2(\cot 2a - \tan 2a). Substitute this back: tana+2tan2a+2(cot2atan2a)tana + 2tan2a + 2(\cot 2a - \tan 2a) =tana+2tan2a+2cot2a2tan2a= tana + 2tan2a + 2\cot 2a - 2\tan 2a =tana+2cot2a= tana + 2\cot 2a Finally, consider 2cot2a2\cot 2a. Let x=ax=a. 2cot2a=cotatana2\cot 2a = \cot a - \tan a. Substitute this back: tana+(cotatana)tana + (\cot a - \tan a) =cota= \cot a. Comparing with λcota\lambda \cot a, we find λ=1\lambda = 1. So, (III) matches with (T).

(IV) (4 cos²9° -3) (4 cos²27° -3) = tank°, then k is We use the triple angle formula for cosine: cos3θ=4cos3θ3cosθ\cos 3\theta = 4\cos^3 \theta - 3\cos \theta. Dividing by cosθ\cos\theta (assuming cosθ0\cos\theta \neq 0): cos3θcosθ=4cos2θ3\frac{\cos 3\theta}{\cos \theta} = 4\cos^2 \theta - 3. For the first term, let θ=9\theta = 9^\circ: 4cos293=cos(3×9)cos9=cos27cos94\cos^2 9^\circ - 3 = \frac{\cos(3 \times 9^\circ)}{\cos 9^\circ} = \frac{\cos 27^\circ}{\cos 9^\circ}. For the second term, let θ=27\theta = 27^\circ: 4cos2273=cos(3×27)cos27=cos81cos274\cos^2 27^\circ - 3 = \frac{\cos(3 \times 27^\circ)}{\cos 27^\circ} = \frac{\cos 81^\circ}{\cos 27^\circ}. Multiply these two terms: (cos27cos9)×(cos81cos27)(\frac{\cos 27^\circ}{\cos 9^\circ}) \times (\frac{\cos 81^\circ}{\cos 27^\circ}) The cos27\cos 27^\circ terms cancel out, leaving: cos81cos9\frac{\cos 81^\circ}{\cos 9^\circ}. We know that cos81=cos(909)=sin9\cos 81^\circ = \cos(90^\circ - 9^\circ) = \sin 9^\circ. So the expression becomes sin9cos9=tan9\frac{\sin 9^\circ}{\cos 9^\circ} = \tan 9^\circ. Comparing this with tank\tan k^\circ, we get k=9k = 9. So, (IV) matches with (U).

Final Matches: (I) - (R) (II) - (S) (III) - (T) (IV) - (U)

The question asks "Which of the following is CORRECT?". Since no options are provided in the prompt, we assume the correct answer is the set of these pairings.