Question
Question: |List-I|List-II| |---|---| |(I) The value of tan 20°. tan 40°. tan 60°. tan 80° is|(P) Odd natural| ...
List-I | List-II |
---|---|
(I) The value of tan 20°. tan 40°. tan 60°. tan 80° is | (P) Odd natural |
(II) The value of 4(sin416π+sin4163π+sin4165π+sin4167π) is | (Q) Even natural |
(III) tana + 2tan2a + 4tan4a + 8cot8a = λcota then λ is | (R) 3 |
(IV) (4 cos²9° -3) (4 cos²27° -3) = tank°, then k is | (S) 6 |
(T) 1 | |
(U) 9 |
Which of the following is CORRECT?

I-R, II-S, III-T, IV-U
Solution
The problem requires us to evaluate four trigonometric expressions and match their results to the given options.
(I) The value of tan 20°. tan 40°. tan 60°. tan 80° is We use the trigonometric identity: tanθtan(60∘−θ)tan(60∘+θ)=tan(3θ). Let θ=20∘. Then, tan20∘tan(60∘−20∘)tan(60∘+20∘)=tan20∘tan40∘tan80∘. According to the identity, this product is equal to tan(3×20∘)=tan60∘=3. The full expression is tan20∘tan40∘tan60∘tan80∘=(tan20∘tan40∘tan80∘)×tan60∘. Substituting the values: 3×3=3. So, (I) matches with (R).
(II) The value of 4(sin416π+sin4163π+sin4165π+sin4167π) is Let's analyze the angles: 167π=168π−π=2π−16π. So, sin(167π)=cos(16π). 165π=168π−3π=2π−163π. So, sin(165π)=cos(163π). Substitute these into the expression: 4(sin416π+sin4163π+cos4163π+cos416π) Rearrange the terms: 4[(sin416π+cos416π)+(sin4163π+cos4163π)] We use the identity sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x=1−21(2sinxcosx)2=1−21sin2(2x). For x=16π: sin416π+cos416π=1−21sin2(162π)=1−21sin2(8π). For x=163π: sin4163π+cos4163π=1−21sin2(166π)=1−21sin2(83π). Substitute these back: 4[(1−21sin2(8π))+(1−21sin2(83π))] 4[2−21(sin2(8π)+sin2(83π))] 8−2(sin2(8π)+sin2(83π)) Now, notice that 83π=84π−π=2π−8π. So, sin(83π)=cos(8π). Therefore, sin2(83π)=cos2(8π). The expression becomes: 8−2(sin2(8π)+cos2(8π)) 8−2(1) (since sin2x+cos2x=1) 8−2=6. So, (II) matches with (S).
(III) tana + 2tan2a + 4tan4a + 8cot8a = λcota then λ is We use the identity: cotx−tanx=2cot2x. This can be rearranged as tanx=cotx−2cot2x. Let's simplify the given expression from right to left: Consider the term 8cot8a. From the identity 2cot2x=cotx−tanx, let x=4a. Then 2cot8a=cot4a−tan4a. So, 8cot8a=4(2cot8a)=4(cot4a−tan4a). Substitute this into the expression: tana+2tan2a+4tan4a+4(cot4a−tan4a) =tana+2tan2a+4tan4a+4cot4a−4tan4a =tana+2tan2a+4cot4a Now consider 4cot4a=2(2cot4a). Let x=2a. 2cot4a=cot2a−tan2a. So, 4cot4a=2(cot2a−tan2a). Substitute this back: tana+2tan2a+2(cot2a−tan2a) =tana+2tan2a+2cot2a−2tan2a =tana+2cot2a Finally, consider 2cot2a. Let x=a. 2cot2a=cota−tana. Substitute this back: tana+(cota−tana) =cota. Comparing with λcota, we find λ=1. So, (III) matches with (T).
(IV) (4 cos²9° -3) (4 cos²27° -3) = tank°, then k is We use the triple angle formula for cosine: cos3θ=4cos3θ−3cosθ. Dividing by cosθ (assuming cosθ=0): cosθcos3θ=4cos2θ−3. For the first term, let θ=9∘: 4cos29∘−3=cos9∘cos(3×9∘)=cos9∘cos27∘. For the second term, let θ=27∘: 4cos227∘−3=cos27∘cos(3×27∘)=cos27∘cos81∘. Multiply these two terms: (cos9∘cos27∘)×(cos27∘cos81∘) The cos27∘ terms cancel out, leaving: cos9∘cos81∘. We know that cos81∘=cos(90∘−9∘)=sin9∘. So the expression becomes cos9∘sin9∘=tan9∘. Comparing this with tank∘, we get k=9. So, (IV) matches with (U).
Final Matches: (I) - (R) (II) - (S) (III) - (T) (IV) - (U)
The question asks "Which of the following is CORRECT?". Since no options are provided in the prompt, we assume the correct answer is the set of these pairings.