Solveeit Logo

Question

Question: Let $g(x)$ be a function defined on $R$ such that $g'(x) = g'(5050 - x) \forall x \in [0, 5050]$. If...

Let g(x)g(x) be a function defined on RR such that g(x)=g(5050x)x[0,5050]g'(x) = g'(5050 - x) \forall x \in [0, 5050]. If g(0)=1g(0) = 1 and g(5050)=100g(5050) = 100 and 05050g(x)dx=k(5050)\int_{0}^{5050} g(x) dx = k(5050) then k equals

A

100

B

101

C

101/2

D

202

Answer

101/2

Explanation

Solution

Let a=5050a = 5050. The given condition is g(x)=g(ax)g'(x) = g'(a - x) for x[0,a]x \in [0, a]. Integrating both sides with respect to xx, we get: g(x)dx=g(ax)dx\int g'(x) dx = \int g'(a - x) dx g(x)=g(ax)+Cg(x) = -g(a - x) + C g(x)+g(ax)=Cg(x) + g(a - x) = C

Using the given values g(0)=1g(0) = 1 and g(a)=100g(a) = 100: For x=0x=0, g(0)+g(a0)=C    1+100=C    C=101g(0) + g(a - 0) = C \implies 1 + 100 = C \implies C = 101. Thus, g(x)+g(ax)=101g(x) + g(a - x) = 101 for x[0,a]x \in [0, a].

Let the integral be I=0ag(x)dxI = \int_{0}^{a} g(x) dx. We are given I=kaI = k \cdot a. Using the property 0af(x)dx=0af(ax)dx\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx: I=0ag(ax)dxI = \int_{0}^{a} g(a - x) dx.

Adding the two expressions for II: 2I=0ag(x)dx+0ag(ax)dx2I = \int_{0}^{a} g(x) dx + \int_{0}^{a} g(a - x) dx 2I=0a[g(x)+g(ax)]dx2I = \int_{0}^{a} [g(x) + g(a - x)] dx

Substitute g(x)+g(ax)=101g(x) + g(a - x) = 101: 2I=0a101dx2I = \int_{0}^{a} 101 dx 2I=101[x]0a2I = 101 [x]_{0}^{a} 2I=101(a0)2I = 101 (a - 0) 2I=101a2I = 101a

Given I=kaI = ka: 2(ka)=101a2(ka) = 101a 2k=1012k = 101 k=1012k = \frac{101}{2}