Question
Question: Let $g(x)$ be a function defined on $R$ such that $g'(x) = g'(5050 - x) \forall x \in [0, 5050]$. If...
Let g(x) be a function defined on R such that g′(x)=g′(5050−x)∀x∈[0,5050]. If g(0)=1 and g(5050)=100 and ∫05050g(x)dx=k(5050) then k equals

A
100
B
101
C
101/2
D
202
Answer
101/2
Explanation
Solution
Let a=5050. The given condition is g′(x)=g′(a−x) for x∈[0,a]. Integrating both sides with respect to x, we get: ∫g′(x)dx=∫g′(a−x)dx g(x)=−g(a−x)+C g(x)+g(a−x)=C
Using the given values g(0)=1 and g(a)=100: For x=0, g(0)+g(a−0)=C⟹1+100=C⟹C=101. Thus, g(x)+g(a−x)=101 for x∈[0,a].
Let the integral be I=∫0ag(x)dx. We are given I=k⋅a. Using the property ∫0af(x)dx=∫0af(a−x)dx: I=∫0ag(a−x)dx.
Adding the two expressions for I: 2I=∫0ag(x)dx+∫0ag(a−x)dx 2I=∫0a[g(x)+g(a−x)]dx
Substitute g(x)+g(a−x)=101: 2I=∫0a101dx 2I=101[x]0a 2I=101(a−0) 2I=101a
Given I=ka: 2(ka)=101a 2k=101 k=2101