Solveeit Logo

Question

Question: Let $f(x) = \frac{1}{\pi}(sin^{-1}x + cos^{-1}x + tan^{-1}x) + \frac{(x+1)}{x^2+2x+10}$, if the abso...

Let f(x)=1π(sin1x+cos1x+tan1x)+(x+1)x2+2x+10f(x) = \frac{1}{\pi}(sin^{-1}x + cos^{-1}x + tan^{-1}x) + \frac{(x+1)}{x^2+2x+10}, if the absolute maximum value of the integral part of 1M\frac{1}{M} is ______.

The number of rational numbers in the domain of function

y=sin1x+cos1x+tan1x+cosec1x+sec1x+cot1xy = sin^{-1}x + cos^{-1}x + tan^{-1}x + cosec^{-1}x + sec^{-1}x + cot^{-1}x, is ______

If sin1p+sin1q+sin1r=3π2sin^{-1}p + sin^{-1}q + sin^{-1}r = \frac{3\pi}{2}, then A=p2+q2+r2A = p^2 + q^2 + r^2. If (sin1x)2+(sin1y)2+(sin1z)2=3π24(sin^{-1}x)^2 + (sin^{-1}y)^2 + (sin^{-1}z)^2 = \frac{3\pi^2}{4}, then

B=(x+y+z)minB = |(x+y+z)_{min}|, then the value of (A + B) is ______.

Answer

S9: 1 S10: 2 S11: 6

Explanation

Solution

Solution for S9:

The given function is f(x)=1π(sin1x+cos1x+tan1x)+(x+1)x2+2x+10f(x) = \frac{1}{\pi}(\sin^{-1}x + \cos^{-1}x + \tan^{-1}x) + \frac{(x+1)}{x^2+2x+10}.

  1. Determine the domain of f(x)f(x):
    The terms sin1x\sin^{-1}x and cos1x\cos^{-1}x are defined for x[1,1]x \in [-1, 1].
    The term tan1x\tan^{-1}x is defined for x(,)x \in (-\infty, \infty).
    The term (x+1)x2+2x+10\frac{(x+1)}{x^2+2x+10} is defined for all xx since the denominator x2+2x+10=(x+1)2+9x^2+2x+10 = (x+1)^2+9 is always positive.
    Therefore, the domain of f(x)f(x) is the intersection of these domains, which is x[1,1]x \in [-1, 1].

  2. Simplify f(x)f(x) using identities:
    We know that sin1x+cos1x=π2\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} for x[1,1]x \in [-1, 1].
    So, f(x)=1π(π2+tan1x)+(x+1)(x+1)2+9f(x) = \frac{1}{\pi}\left(\frac{\pi}{2} + \tan^{-1}x\right) + \frac{(x+1)}{(x+1)^2+9}.
    f(x)=12+1πtan1x+x+1(x+1)2+9f(x) = \frac{1}{2} + \frac{1}{\pi}\tan^{-1}x + \frac{x+1}{(x+1)^2+9}.

  3. Find the maximum value of f(x)f(x) (denoted as MM):
    To find the maximum value of f(x)f(x) on x[1,1]x \in [-1, 1], we analyze each component:

    • Let g(x)=1πtan1xg(x) = \frac{1}{\pi}\tan^{-1}x. Since tan1x\tan^{-1}x is an increasing function, its maximum value on [1,1][-1, 1] occurs at x=1x=1.
      g(1)=1πtan1(1)=1ππ4=14g(1) = \frac{1}{\pi}\tan^{-1}(1) = \frac{1}{\pi} \cdot \frac{\pi}{4} = \frac{1}{4}.
    • Let h(x)=x+1(x+1)2+9h(x) = \frac{x+1}{(x+1)^2+9}. Let u=x+1u = x+1. Since x[1,1]x \in [-1, 1], u[0,2]u \in [0, 2].
      So we need to find the maximum of k(u)=uu2+9k(u) = \frac{u}{u^2+9} for u[0,2]u \in [0, 2].
      To find the maximum, we compute the derivative k(u)k'(u):
      k(u)=1(u2+9)u(2u)(u2+9)2=9u2(u2+9)2k'(u) = \frac{1 \cdot (u^2+9) - u \cdot (2u)}{(u^2+9)^2} = \frac{9-u^2}{(u^2+9)^2}.
      For u[0,2]u \in [0, 2], u2[0,4]u^2 \in [0, 4], so 9u29-u^2 is always positive. Thus, k(u)>0k'(u) > 0 for u[0,2]u \in [0, 2], meaning k(u)k(u) is an increasing function on this interval.
      The maximum value of k(u)k(u) occurs at u=2u=2.
      k(2)=222+9=24+9=213k(2) = \frac{2}{2^2+9} = \frac{2}{4+9} = \frac{2}{13}.
      This corresponds to x+1=2x=1x+1=2 \Rightarrow x=1.

    Since both g(x)g(x) and h(x)h(x) attain their maximum values at x=1x=1, the maximum value of f(x)f(x) is:
    M=f(1)=12+g(1)+h(1)=12+14+213M = f(1) = \frac{1}{2} + g(1) + h(1) = \frac{1}{2} + \frac{1}{4} + \frac{2}{13}.
    M=2652+1352+852=26+13+852=4752M = \frac{26}{52} + \frac{13}{52} + \frac{8}{52} = \frac{26+13+8}{52} = \frac{47}{52}.

  4. Calculate the integral part of 1M\frac{1}{M}:
    1M=14752=5247\frac{1}{M} = \frac{1}{\frac{47}{52}} = \frac{52}{47}.
    5247=1+5471.106\frac{52}{47} = 1 + \frac{5}{47} \approx 1.106.
    The integral part of 1M\frac{1}{M} is 5247=1\lfloor \frac{52}{47} \rfloor = 1.

The absolute maximum value of the integral part of 1M\frac{1}{M} is 1.

Solution for S10:

The given function is y=sin1x+cos1x+tan1x+csc1x+sec1x+cot1xy = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x + \csc^{-1}x + \sec^{-1}x + \cot^{-1}x.

  1. Determine the domain of each inverse trigonometric function:

    • Domain(sin1x\sin^{-1}x): x[1,1]x \in [-1, 1]
    • Domain(cos1x\cos^{-1}x): x[1,1]x \in [-1, 1]
    • Domain(tan1x\tan^{-1}x): x(,)x \in (-\infty, \infty)
    • Domain(csc1x\csc^{-1}x): x(,1][1,)x \in (-\infty, -1] \cup [1, \infty)
    • Domain(sec1x\sec^{-1}x): x(,1][1,)x \in (-\infty, -1] \cup [1, \infty)
    • Domain(cot1x\cot^{-1}x): x(,)x \in (-\infty, \infty)
  2. Find the domain of yy by intersecting all individual domains:
    Domain(yy) = Domain(sin1x\sin^{-1}x) \cap Domain(cos1x\cos^{-1}x) \cap Domain(tan1x\tan^{-1}x) \cap Domain(csc1x\csc^{-1}x) \cap Domain(sec1x\sec^{-1}x) \cap Domain(cot1x\cot^{-1}x).

    • ([1,1])([1,1])=[1,1]([-1, 1]) \cap ([-1, 1]) = [-1, 1]
    • ([1,1])((,))=[1,1]([-1, 1]) \cap ((-\infty, \infty)) = [-1, 1]
    • ([1,1])((,1][1,))([-1, 1]) \cap ((-\infty, -1] \cup [1, \infty)): This intersection yields only the values x=1x=-1 and x=1x=1.
      If x[1,1]x \in [-1, 1] and x1x \le -1, then x=1x=-1.
      If x[1,1]x \in [-1, 1] and x1x \ge 1, then x=1x=1.
      So, the intersection is {1,1}\{-1, 1\}.
    • {1,1}((,))={1,1}\{-1, 1\} \cap ((-\infty, \infty)) = \{-1, 1\}.

    Thus, the domain of the function yy is {1,1}\{-1, 1\}.

  3. Count the number of rational numbers in the domain:
    The numbers in the domain are 1-1 and 11. Both 1-1 and 11 are rational numbers.
    Therefore, there are 2 rational numbers in the domain of the function.

The number of rational numbers in the domain of the function is 2.

Solution for S11:

Part 1: Find A
Given sin1p+sin1q+sin1r=3π2\sin^{-1}p + \sin^{-1}q + \sin^{-1}r = \frac{3\pi}{2}.
The range of sin1x\sin^{-1}x is [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}].
The maximum value of each sin1\sin^{-1} term is π2\frac{\pi}{2}.
For the sum of three such terms to be 3π2\frac{3\pi}{2}, each term must individually attain its maximum value.
So, sin1p=π2\sin^{-1}p = \frac{\pi}{2}, sin1q=π2\sin^{-1}q = \frac{\pi}{2}, and sin1r=π2\sin^{-1}r = \frac{\pi}{2}.
This implies p=sin(π2)=1p = \sin(\frac{\pi}{2}) = 1.
Similarly, q=1q = 1 and r=1r = 1.
Then A=p2+q2+r2=12+12+12=1+1+1=3A = p^2 + q^2 + r^2 = 1^2 + 1^2 + 1^2 = 1+1+1 = 3.

Part 2: Find B
Given (sin1x)2+(sin1y)2+(sin1z)2=3π24(\sin^{-1}x)^2 + (\sin^{-1}y)^2 + (\sin^{-1}z)^2 = \frac{3\pi^2}{4}.
Let a=sin1xa = \sin^{-1}x, b=sin1yb = \sin^{-1}y, c=sin1zc = \sin^{-1}z.
Since the range of sin1t\sin^{-1}t is [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}], the range of (sin1t)2(\sin^{-1}t)^2 is [0,(π2)2]=[0,π24][0, (\frac{\pi}{2})^2] = [0, \frac{\pi^2}{4}].
So, a2[0,π24]a^2 \in [0, \frac{\pi^2}{4}], b2[0,π24]b^2 \in [0, \frac{\pi^2}{4}], c2[0,π24]c^2 \in [0, \frac{\pi^2}{4}].
For their sum a2+b2+c2a^2 + b^2 + c^2 to be 3π24\frac{3\pi^2}{4}, each term must individually attain its maximum value.
So, a2=π24a^2 = \frac{\pi^2}{4}, b2=π24b^2 = \frac{\pi^2}{4}, c2=π24c^2 = \frac{\pi^2}{4}.
This means:
sin1x=±π2x=sin(±π2)x=±1\sin^{-1}x = \pm \frac{\pi}{2} \Rightarrow x = \sin(\pm \frac{\pi}{2}) \Rightarrow x = \pm 1.
sin1y=±π2y=sin(±π2)y=±1\sin^{-1}y = \pm \frac{\pi}{2} \Rightarrow y = \sin(\pm \frac{\pi}{2}) \Rightarrow y = \pm 1.
sin1z=±π2z=sin(±π2)z=±1\sin^{-1}z = \pm \frac{\pi}{2} \Rightarrow z = \sin(\pm \frac{\pi}{2}) \Rightarrow z = \pm 1.
So, x,y,z{1,1}x, y, z \in \{-1, 1\}.

We need to find B=(x+y+z)minB = |(x+y+z)_{min}|.
To minimize the sum (x+y+z)(x+y+z), we must choose each variable to be its minimum possible value.
So, (x+y+z)min=(1)+(1)+(1)=3(x+y+z)_{min} = (-1) + (-1) + (-1) = -3.
Then B=(x+y+z)min=3=3B = |(x+y+z)_{min}| = |-3| = 3.

Part 3: Find (A + B)
A=3A = 3 and B=3B = 3.
A+B=3+3=6A+B = 3+3 = 6.

The value of (A + B) is 6.

The question asks for the answer to S9, S10, and S11.
S9 answer: 1
S10 answer: 2
S11 answer: 6

The format of the question implies a single answer for each S. I will provide the final answers for each as requested.

Final Answer:
S9: 1
S10: 2
S11: 6

The question asks for "the absolute maximum value of the integral part of 1M\frac{1}{M} is ______." This is a fill-in-the-blank type question.
The final answer for S9 is 1.

The question asks for "The number of rational numbers in the domain of function ... is ______". This is a fill-in-the-blank type question.
The final answer for S10 is 2.

The question asks for "the value of (A + B) is ______". This is a fill-in-the-blank type question.
The final answer for S11 is 6.

Since the question asks for a single numerical answer for each, I'll provide the final numerical value.

S9 Answer: 1
S10 Answer: 2
S11 Answer: 6


Explanation of the solution:

For S9:

  1. Simplify f(x)f(x) using sin1x+cos1x=π2\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} and rewrite the quadratic denominator.
  2. Identify the domain of f(x)f(x) as [1,1][-1, 1].
  3. Find the maximum value of each term in f(x)f(x) within the domain [1,1][-1, 1].
    • For 1πtan1x\frac{1}{\pi}\tan^{-1}x, the maximum is at x=1x=1, giving 14\frac{1}{4}.
    • For x+1(x+1)2+9\frac{x+1}{(x+1)^2+9}, let u=x+1u=x+1, so u[0,2]u \in [0,2]. The function uu2+9\frac{u}{u^2+9} is increasing on [0,2][0,2], so its maximum is at u=2u=2 (i.e., x=1x=1), giving 213\frac{2}{13}.
  4. Since both terms are maximized at x=1x=1, the maximum value M=f(1)=12+14+213=4752M = f(1) = \frac{1}{2} + \frac{1}{4} + \frac{2}{13} = \frac{47}{52}.
  5. Calculate 1M=52471.106\frac{1}{M} = \frac{52}{47} \approx 1.106.
  6. The integral part of 1M\frac{1}{M} is 1.106=1\lfloor 1.106 \rfloor = 1.

For S10:

  1. List the domains for each inverse trigonometric function:
    • sin1x,cos1x\sin^{-1}x, \cos^{-1}x: [1,1][-1, 1]
    • tan1x,cot1x\tan^{-1}x, \cot^{-1}x: (,)(-\infty, \infty)
    • csc1x,sec1x\csc^{-1}x, \sec^{-1}x: (,1][1,)(-\infty, -1] \cup [1, \infty)
  2. The domain of the sum function is the intersection of all individual domains.
  3. The intersection of [1,1][-1, 1] and (,1][1,)(-\infty, -1] \cup [1, \infty) is {1,1}\{-1, 1\}. This is the most restrictive part. All other domains include {1,1}\{-1, 1\}.
  4. The domain of yy is {1,1}\{-1, 1\}.
  5. Both 1-1 and 11 are rational numbers. So, there are 2 rational numbers in the domain.

For S11:

  1. For A: Given sin1p+sin1q+sin1r=3π2\sin^{-1}p + \sin^{-1}q + \sin^{-1}r = \frac{3\pi}{2}. Since the maximum value of each sin1\sin^{-1} term is π2\frac{\pi}{2}, this equality holds only if p=q=r=1p=q=r=1. Thus, A=12+12+12=3A = 1^2+1^2+1^2 = 3.
  2. For B: Given (sin1x)2+(sin1y)2+(sin1z)2=3π24(\sin^{-1}x)^2 + (\sin^{-1}y)^2 + (\sin^{-1}z)^2 = \frac{3\pi^2}{4}. Since the maximum value of (sin1t)2(\sin^{-1}t)^2 is (π2)2=π24(\frac{\pi}{2})^2 = \frac{\pi^2}{4}, this equality holds only if (sin1x)2=(sin1y)2=(sin1z)2=π24(\sin^{-1}x)^2 = (\sin^{-1}y)^2 = (\sin^{-1}z)^2 = \frac{\pi^2}{4}. This implies sin1x=sin1y=sin1z=±π2\sin^{-1}x = \sin^{-1}y = \sin^{-1}z = \pm \frac{\pi}{2}, so x,y,z{1,1}x, y, z \in \{-1, 1\}.
  3. To find (x+y+z)min(x+y+z)_{min}, choose x=y=z=1x=y=z=-1. So (x+y+z)min=3(x+y+z)_{min} = -3.
  4. B=(x+y+z)min=3=3B = |(x+y+z)_{min}| = |-3| = 3.
  5. Finally, A+B=3+3=6A+B = 3+3 = 6.

Answer: S9: 1 S10: 2 S11: 6

Subject: Mathematics Chapter: Inverse Trigonometric Functions Topic: Properties of Inverse Trigonometric Functions, Domain and Range of Inverse Trigonometric Functions, Maxima and Minima of Functions.

Difficulty Level: Medium

Question Type: fill_in_the_blank