Solveeit Logo

Question

Question: Let $f(x) = 2x^3 + ax^2 + bx - 3\cos^2 x$ then $f(x)$ is an increasing function for all $x \in R$ if...

Let f(x)=2x3+ax2+bx3cos2xf(x) = 2x^3 + ax^2 + bx - 3\cos^2 x then f(x)f(x) is an increasing function for all xRx \in R if

A

a26b18>0a^2 - 6b - 18 > 0

B

a26b+18<0a^2 - 6b + 18 < 0

C

a23b6<0a^2 - 3b - 6 < 0

D

a>0,b>0a > 0, b > 0

Answer

B

Explanation

Solution

For a function f(x)f(x) to be an increasing function for all xRx \in R, its derivative f(x)f'(x) must be greater than or equal to zero for all xRx \in R.

Given the function f(x)=2x3+ax2+bx3cos2xf(x) = 2x^3 + ax^2 + bx - 3\cos^2 x.

First, let's find the derivative f(x)f'(x): f(x)=ddx(2x3)+ddx(ax2)+ddx(bx)ddx(3cos2x)f'(x) = \frac{d}{dx}(2x^3) + \frac{d}{dx}(ax^2) + \frac{d}{dx}(bx) - \frac{d}{dx}(3\cos^2 x)

  1. ddx(2x3)=6x2\frac{d}{dx}(2x^3) = 6x^2
  2. ddx(ax2)=2ax\frac{d}{dx}(ax^2) = 2ax
  3. ddx(bx)=b\frac{d}{dx}(bx) = b
  4. For 3cos2x-3\cos^2 x, we use the chain rule: ddx(3cos2x)=32cosx(sinx)\frac{d}{dx}(-3\cos^2 x) = -3 \cdot 2\cos x \cdot (-\sin x) =6sinxcosx= 6\sin x \cos x Using the identity sin(2x)=2sinxcosx\sin(2x) = 2\sin x \cos x, we get: =3(2sinxcosx)=3sin(2x)= 3(2\sin x \cos x) = 3\sin(2x)

So, f(x)=6x2+2ax+b+3sin(2x)f'(x) = 6x^2 + 2ax + b + 3\sin(2x).

For f(x)f(x) to be an increasing function for all xRx \in R, we must have f(x)0f'(x) \ge 0 for all xRx \in R. 6x2+2ax+b+3sin(2x)06x^2 + 2ax + b + 3\sin(2x) \ge 0 for all xRx \in R.

Let's rearrange the inequality: 6x2+2ax+b3sin(2x)6x^2 + 2ax + b \ge -3\sin(2x).

For this inequality to hold for all xRx \in R, the minimum value of the quadratic expression on the left-hand side must be greater than or equal to the maximum value of the trigonometric expression on the right-hand side.

  1. Minimum value of the quadratic P(x)=6x2+2ax+bP(x) = 6x^2 + 2ax + b: This is a parabola opening upwards (A=6>0A=6 > 0). Its minimum value occurs at x=2a2(6)=a6x = -\frac{2a}{2(6)} = -\frac{a}{6}. The minimum value is P(a6)=6(a6)2+2a(a6)+bP\left(-\frac{a}{6}\right) = 6\left(-\frac{a}{6}\right)^2 + 2a\left(-\frac{a}{6}\right) + b =6(a236)2a26+b= 6\left(\frac{a^2}{36}\right) - \frac{2a^2}{6} + b =a26a23+b= \frac{a^2}{6} - \frac{a^2}{3} + b =a22a26+b= \frac{a^2 - 2a^2}{6} + b =a26+b= -\frac{a^2}{6} + b Alternatively, using the formula for the minimum value of Ax2+Bx+CAx^2+Bx+C which is 4ACB24A\frac{4AC-B^2}{4A}: Pmin=4(6)(b)(2a)24(6)=24b4a224=ba26P_{min} = \frac{4(6)(b) - (2a)^2}{4(6)} = \frac{24b - 4a^2}{24} = b - \frac{a^2}{6}.

  2. Maximum value of 3sin(2x)-3\sin(2x): We know that 1sin(2x)1-1 \le \sin(2x) \le 1. Multiplying by 3-3 (and reversing the inequality signs): 33sin(2x)3-3 \le -3\sin(2x) \le 3. So, the maximum value of 3sin(2x)-3\sin(2x) is 33.

For 6x2+2ax+b3sin(2x)6x^2 + 2ax + b \ge -3\sin(2x) to hold for all xx, we must have: min(6x2+2ax+b)max(3sin(2x))\min(6x^2 + 2ax + b) \ge \max(-3\sin(2x)) ba263b - \frac{a^2}{6} \ge 3

Multiply by 6 to clear the denominator: 6ba2186b - a^2 \ge 18

Rearrange the terms to match the options: a2+6b180-a^2 + 6b - 18 \ge 0 a26b+180a^2 - 6b + 18 \le 0

Comparing this with the given options: A) a26b18>0a^2 - 6b - 18 > 0 B) a26b+18<0a^2 - 6b + 18 < 0 C) a23b6<0a^2 - 3b - 6 < 0 D) a>0,b>0a > 0, b > 0

Our derived condition is a26b+180a^2 - 6b + 18 \le 0. Option B is a26b+18<0a^2 - 6b + 18 < 0. Since f(x)0f'(x) \ge 0 is the condition for an increasing function, a26b+180a^2 - 6b + 18 \le 0 is the correct condition. If the options contain a strict inequality, it usually implies that the function is strictly increasing, or that the problem expects a slightly stronger condition. In competitive exams, if \le is derived and << is an option, it's often the intended answer, implying that equality might lead to points where f(x)=0f'(x)=0 over an interval, which is not strictly increasing. However, for "increasing function", f(x)0f'(x) \ge 0 is the standard definition. Given the options, a26b+18<0a^2 - 6b + 18 < 0 is the closest match and represents a sufficient condition for f(x)>0f'(x) > 0 everywhere, which implies f(x)f(x) is strictly increasing, and thus also increasing.