Solveeit Logo

Question

Question: Let $f:R\rightarrow R$ be a function defined by $f(x)=log_{\sqrt{m}}(\sqrt{2}(sinx-cosx)+m-2)$, for ...

Let f:RRf:R\rightarrow R be a function defined by f(x)=logm(2(sinxcosx)+m2)f(x)=log_{\sqrt{m}}(\sqrt{2}(sinx-cosx)+m-2), for some m, such that the range of f is [0, 2]. Then the value of m is:

A

5

B

2

C

3

D

4

Answer

5

Explanation

Solution

The argument of the logarithm is A(x)=2(sinxcosx)+m2A(x) = \sqrt{2}(\sin x - \cos x) + m - 2. The range of 2(sinxcosx)\sqrt{2}(\sin x - \cos x) is [2,2][-2, 2]. Thus, the range of A(x)A(x) is [m4,m][m-4, m]. For f(x)f(x) to be defined, the base m>0,1\sqrt{m} > 0, \neq 1 and the argument A(x)>0A(x) > 0. The condition m4>0    m>4m-4 > 0 \implies m > 4 ensures these. Since m>4m > 4, m>1\sqrt{m} > 1, so logm\log_{\sqrt{m}} is increasing. The range of f(x)f(x) is [logm(m4),logm(m)][\log_{\sqrt{m}}(m-4), \log_{\sqrt{m}}(m)]. Given range is [0,2][0, 2]. Equating minimums: logm(m4)=0    m4=1    m=5\log_{\sqrt{m}}(m-4) = 0 \implies m-4 = 1 \implies m = 5. Verifying with maximums: log5(5)=2\log_{\sqrt{5}}(5) = 2, which is correct.