Solveeit Logo

Question

Question: If $x = \log_{2a} a$, $y = \log_{3a} 2a$ and $z = \log_{4a} 3a$, prove that: $xyz + 1 = 2yz$....

If x=log2aax = \log_{2a} a, y=log3a2ay = \log_{3a} 2a and z=log4a3az = \log_{4a} 3a, prove that: xyz+1=2yzxyz + 1 = 2yz.

Answer

The identity xyz+1=2yzxyz + 1 = 2yz is proven to be true.

Explanation

Solution

We use the change of base formula for logarithms: logbc=logkclogkb\log_b c = \frac{\log_k c}{\log_k b}. Let's convert all logarithms to base aa.

Given: x=log2aax = \log_{2a} a Using the change of base formula with base aa: x=logaaloga2a=1loga2ax = \frac{\log_a a}{\log_a 2a} = \frac{1}{\log_a 2a} This implies: loga2a=1x\log_a 2a = \frac{1}{x} (Equation 1)

y=log3a2ay = \log_{3a} 2a Using the change of base formula with base aa: y=loga2aloga3ay = \frac{\log_a 2a}{\log_a 3a} Substitute the expression for loga2a\log_a 2a from Equation 1: y=1/xloga3ay = \frac{1/x}{\log_a 3a} This implies: loga3a=1xy\log_a 3a = \frac{1}{xy} (Equation 2)

z=log4a3az = \log_{4a} 3a Using the change of base formula with base aa: z=loga3aloga4az = \frac{\log_a 3a}{\log_a 4a} Substitute the expression for loga3a\log_a 3a from Equation 2: z=1/(xy)loga4az = \frac{1/(xy)}{\log_a 4a} This implies: loga4a=1xyz\log_a 4a = \frac{1}{xyz} (Equation 3)

Now, we expand the terms in Equations 1, 2, and 3 using the logarithm properties log(AB)=logA+logB\log(AB) = \log A + \log B.

From Equation 1: loga2a=loga2+logaa=loga2+1\log_a 2a = \log_a 2 + \log_a a = \log_a 2 + 1 So, loga2+1=1x\log_a 2 + 1 = \frac{1}{x} This gives us: loga2=1x1\log_a 2 = \frac{1}{x} - 1 (Equation 4)

From Equation 3: loga4a=loga4+logaa=loga22+1=2loga2+1\log_a 4a = \log_a 4 + \log_a a = \log_a 2^2 + 1 = 2 \log_a 2 + 1 So, 2loga2+1=1xyz2 \log_a 2 + 1 = \frac{1}{xyz} (Equation 5)

Now, substitute the expression for loga2\log_a 2 from Equation 4 into Equation 5: 2(1x1)+1=1xyz2 \left(\frac{1}{x} - 1\right) + 1 = \frac{1}{xyz} 2x2+1=1xyz\frac{2}{x} - 2 + 1 = \frac{1}{xyz} 2x1=1xyz\frac{2}{x} - 1 = \frac{1}{xyz}

Multiply both sides by xyzxyz: xyz(2x1)=xyz(1xyz)xyz \left(\frac{2}{x} - 1\right) = xyz \left(\frac{1}{xyz}\right) 2yzxyz=12yz - xyz = 1 Rearranging this equation gives: xyz+1=2yzxyz + 1 = 2yz

This proves the given identity.