Question
Question: If $x = \log_{2a} a$, $y = \log_{3a} 2a$ and $z = \log_{4a} 3a$, prove that: $xyz + 1 = 2yz$....
If x=log2aa, y=log3a2a and z=log4a3a, prove that: xyz+1=2yz.

The identity xyz+1=2yz is proven to be true.
Solution
We use the change of base formula for logarithms: logbc=logkblogkc. Let's convert all logarithms to base a.
Given: x=log2aa Using the change of base formula with base a: x=loga2alogaa=loga2a1 This implies: loga2a=x1 (Equation 1)
y=log3a2a Using the change of base formula with base a: y=loga3aloga2a Substitute the expression for loga2a from Equation 1: y=loga3a1/x This implies: loga3a=xy1 (Equation 2)
z=log4a3a Using the change of base formula with base a: z=loga4aloga3a Substitute the expression for loga3a from Equation 2: z=loga4a1/(xy) This implies: loga4a=xyz1 (Equation 3)
Now, we expand the terms in Equations 1, 2, and 3 using the logarithm properties log(AB)=logA+logB.
From Equation 1: loga2a=loga2+logaa=loga2+1 So, loga2+1=x1 This gives us: loga2=x1−1 (Equation 4)
From Equation 3: loga4a=loga4+logaa=loga22+1=2loga2+1 So, 2loga2+1=xyz1 (Equation 5)
Now, substitute the expression for loga2 from Equation 4 into Equation 5: 2(x1−1)+1=xyz1 x2−2+1=xyz1 x2−1=xyz1
Multiply both sides by xyz: xyz(x2−1)=xyz(xyz1) 2yz−xyz=1 Rearranging this equation gives: xyz+1=2yz
This proves the given identity.