Solveeit Logo

Question

Question: If the area of a triangle whose vertices are (2a, b), (a + b, 2b + a), (2b, 2a) be $\lambda$ then th...

If the area of a triangle whose vertices are (2a, b), (a + b, 2b + a), (2b, 2a) be λ\lambda then the area of the triangle whose vertices are (a + b, a - b), (3b - a, b + 3a) and (3a – b, 3b – a) is

A

λ\lambda

B

2λ2\lambda

C

3λ3\lambda

D

4λ4\lambda

Answer

4λ\lambda

Explanation

Solution

The area of a triangle with vertices (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), and (x3,y3)(x_3, y_3) is given by the formula: Area =12x1(y2y3)+x2(y3y1)+x3(y1y2)= \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|

For the first triangle with vertices A=(2a,b)A = (2a, b), B=(a+b,a+2b)B = (a + b, a + 2b), and C=(2b,2a)C = (2b, 2a): x1=2a,y1=bx_1 = 2a, y_1 = b x2=a+b,y2=a+2bx_2 = a + b, y_2 = a + 2b x3=2b,y3=2ax_3 = 2b, y_3 = 2a

Calculating the area λ\lambda: λ=122a((a+2b)2a)+(a+b)(2ab)+2b(b(a+2b))\lambda = \frac{1}{2} |2a((a + 2b) - 2a) + (a + b)(2a - b) + 2b(b - (a + 2b))| λ=122a(2ba)+(2a2ab+2abb2)+2b(ab)\lambda = \frac{1}{2} |2a(2b - a) + (2a^2 - ab + 2ab - b^2) + 2b(-a - b)| λ=124ab2a2+2a2+abb22ab2b2\lambda = \frac{1}{2} |4ab - 2a^2 + 2a^2 + ab - b^2 - 2ab - 2b^2| λ=123ab3b2\lambda = \frac{1}{2} |3ab - 3b^2| λ=32abb2\lambda = \frac{3}{2} |ab - b^2|

For the second triangle with vertices P=(a+b,ab)P = (a + b, a - b), Q=(3ba,b+3a)Q = (3b - a, b + 3a), and R=(3ab,3ba)R = (3a – b, 3b – a): x1=a+b,y1=abx'_1 = a + b, y'_1 = a - b x2=3ba,y2=b+3ax'_2 = 3b - a, y'_2 = b + 3a x3=3ab,y3=3bax'_3 = 3a - b, y'_3 = 3b - a

Calculating the area of the second triangle: Area =12(a+b)((b+3a)(3ba))+(3ba)((3ba)(ab))+(3ab)((ab)(b+3a))= \frac{1}{2} |(a + b)((b + 3a) - (3b - a)) + (3b - a)((3b - a) - (a - b)) + (3a - b)((a - b) - (b + 3a))| Area =12(a+b)(4a2b)+(3ba)(4b2a)+(3ab)(2a2b)= \frac{1}{2} |(a + b)(4a - 2b) + (3b - a)(4b - 2a) + (3a - b)(-2a - 2b)| Area =12(4a22ab+4ab2b2)+(12b26ab4ab+2a2)+(6a26ab+2ab+2b2)= \frac{1}{2} |(4a^2 - 2ab + 4ab - 2b^2) + (12b^2 - 6ab - 4ab + 2a^2) + (-6a^2 - 6ab + 2ab + 2b^2)| Area =12(4a2+2ab2b2)+(2a210ab+12b2)+(6a24ab+2b2)= \frac{1}{2} |(4a^2 + 2ab - 2b^2) + (2a^2 - 10ab + 12b^2) + (-6a^2 - 4ab + 2b^2)| Area =12(4+26)a2+(2104)ab+(2+12+2)b2= \frac{1}{2} |(4+2-6)a^2 + (2-10-4)ab + (-2+12+2)b^2| Area =120a212ab+12b2= \frac{1}{2} |0a^2 - 12ab + 12b^2| Area =1212ab+12b2= \frac{1}{2} |-12ab + 12b^2| Area =6b2ab= 6 |b^2 - ab| Since b2ab=(abb2)=abb2|b^2 - ab| = |-(ab - b^2)| = |ab - b^2|, the area is 6abb26 |ab - b^2|.

From the first triangle, we have λ=32abb2\lambda = \frac{3}{2} |ab - b^2|. Therefore, abb2=23λ|ab - b^2| = \frac{2}{3}\lambda.

Substituting this into the area of the second triangle: Area =6×(23λ)=4λ= 6 \times \left(\frac{2}{3}\lambda\right) = 4\lambda.