Question
Question: If the area of a triangle whose vertices are (2a, b), (a + b, 2b + a), (2b, 2a) be $\lambda$ then th...
If the area of a triangle whose vertices are (2a, b), (a + b, 2b + a), (2b, 2a) be λ then the area of the triangle whose vertices are (a + b, a - b), (3b - a, b + 3a) and (3a – b, 3b – a) is

λ
2λ
3λ
4λ
4λ
Solution
The area of a triangle with vertices (x1,y1), (x2,y2), and (x3,y3) is given by the formula: Area =21∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣
For the first triangle with vertices A=(2a,b), B=(a+b,a+2b), and C=(2b,2a): x1=2a,y1=b x2=a+b,y2=a+2b x3=2b,y3=2a
Calculating the area λ: λ=21∣2a((a+2b)−2a)+(a+b)(2a−b)+2b(b−(a+2b))∣ λ=21∣2a(2b−a)+(2a2−ab+2ab−b2)+2b(−a−b)∣ λ=21∣4ab−2a2+2a2+ab−b2−2ab−2b2∣ λ=21∣3ab−3b2∣ λ=23∣ab−b2∣
For the second triangle with vertices P=(a+b,a−b), Q=(3b−a,b+3a), and R=(3a–b,3b–a): x1′=a+b,y1′=a−b x2′=3b−a,y2′=b+3a x3′=3a−b,y3′=3b−a
Calculating the area of the second triangle: Area =21∣(a+b)((b+3a)−(3b−a))+(3b−a)((3b−a)−(a−b))+(3a−b)((a−b)−(b+3a))∣ Area =21∣(a+b)(4a−2b)+(3b−a)(4b−2a)+(3a−b)(−2a−2b)∣ Area =21∣(4a2−2ab+4ab−2b2)+(12b2−6ab−4ab+2a2)+(−6a2−6ab+2ab+2b2)∣ Area =21∣(4a2+2ab−2b2)+(2a2−10ab+12b2)+(−6a2−4ab+2b2)∣ Area =21∣(4+2−6)a2+(2−10−4)ab+(−2+12+2)b2∣ Area =21∣0a2−12ab+12b2∣ Area =21∣−12ab+12b2∣ Area =6∣b2−ab∣ Since ∣b2−ab∣=∣−(ab−b2)∣=∣ab−b2∣, the area is 6∣ab−b2∣.
From the first triangle, we have λ=23∣ab−b2∣. Therefore, ∣ab−b2∣=32λ.
Substituting this into the area of the second triangle: Area =6×(32λ)=4λ.