Solveeit Logo

Question

Question: If a = 2i+j+k and b = i+2j+3k, then the magnitude of the vector $(\overline{a+b})$ is...

If a = 2i+j+k and b = i+2j+3k, then the magnitude of the vector (a+b)(\overline{a+b}) is

A

6\sqrt{6}

B

34\sqrt{34}

C

14\sqrt{14}

D

26\sqrt{26}

Answer

34\sqrt{34}

Explanation

Solution

Given:

a=2i^+j^+k^,b=i^+2j^+3k^\vec{a} = 2\hat{i}+\hat{j}+\hat{k},\quad \vec{b} = \hat{i}+2\hat{j}+3\hat{k}

Then,

a+b=(2+1)i^+(1+2)j^+(1+3)k^=3i^+3j^+4k^\vec{a}+\vec{b} = (2+1)\hat{i}+(1+2)\hat{j}+(1+3)\hat{k} = 3\hat{i}+3\hat{j}+4\hat{k}

Magnitude:

a+b=32+32+42=9+9+16=34|\vec{a}+\vec{b}| = \sqrt{3^2+3^2+4^2} = \sqrt{9+9+16} = \sqrt{34}