Solveeit Logo

Question

Question: Solve the equation $x^{2logx}=10x^2$. Assume $\log$ denotes the base-10 logarithm....

Solve the equation x2logx=10x2x^{2logx}=10x^2. Assume log\log denotes the base-10 logarithm.

A

Both 101+3210^{\frac{1+\sqrt{3}}{2}} and 1013210^{\frac{1-\sqrt{3}}{2}}

B

101+3210^{\frac{1+\sqrt{3}}{2}}

C

1013210^{\frac{1-\sqrt{3}}{2}}

D

1010

Answer

Both 101+3210^{\frac{1+\sqrt{3}}{2}} and 1013210^{\frac{1-\sqrt{3}}{2}}

Explanation

Solution

To solve the equation x2logx=10x2x^{2\log x} = 10x^2, we take the logarithm base 10 of both sides: log10(x2log10x)=log10(10x2)\log_{10}(x^{2\log_{10} x}) = \log_{10}(10x^2) Using logarithm properties: (2log10x)(log10x)=log1010+log10x2(2\log_{10} x)(\log_{10} x) = \log_{10} 10 + \log_{10} x^2 2(log10x)2=1+2log10x2(\log_{10} x)^2 = 1 + 2\log_{10} x Let y=log10xy = \log_{10} x. The equation becomes a quadratic: 2y2=1+2y2y^2 = 1 + 2y 2y22y1=02y^2 - 2y - 1 = 0 Using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: y=2±(2)24(2)(1)2(2)=2±4+84=2±124=2±234=1±32y = \frac{2 \pm \sqrt{(-2)^2 - 4(2)(-1)}}{2(2)} = \frac{2 \pm \sqrt{4 + 8}}{4} = \frac{2 \pm \sqrt{12}}{4} = \frac{2 \pm 2\sqrt{3}}{4} = \frac{1 \pm \sqrt{3}}{2} So, log10x=1+32\log_{10} x = \frac{1 + \sqrt{3}}{2} or log10x=132\log_{10} x = \frac{1 - \sqrt{3}}{2}. Converting back to exponential form: x=101+32orx=10132x = 10^{\frac{1 + \sqrt{3}}{2}} \quad \text{or} \quad x = 10^{\frac{1 - \sqrt{3}}{2}} Both solutions are positive and valid.