Solveeit Logo

Question

Question: Calculate the following without using trigonometric tables: (i) $\tan 9^\circ - \tan 27^\circ - \ta...

Calculate the following without using trigonometric tables:

(i) tan9tan27tan63+tan81\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ

(ii) csc103sec10\csc 10^\circ - \sqrt{3} \sec 10^\circ

(iii) 22sin10[sec52sin5+cos402sin35]2\sqrt{2}\sin 10^\circ \left[ \frac{\sec 5^\circ}{\frac{2}{\sin 5^\circ} + \cos 40^\circ} - 2\sin 35^\circ \right]

(iv) cot70+4cos70\cot 70^\circ + 4 \cos 70^\circ

(v) tan10tan50+tan70\tan 10^\circ - \tan 50^\circ + \tan 70^\circ

Answer

(i) 4

(ii) 4

(iii) 2

(iv) 3\sqrt{3}

(v) 3\sqrt{3}

Explanation

Solution

Here's a step-by-step calculation for each expression:

(i) tan9tan27tan63+tan81\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ

Rearrange the terms and use the identity tan(90θ)=cotθ\tan (90^\circ - \theta) = \cot \theta:

The expression is (tan9+tan81)(tan27+tan63)(\tan 9^\circ + \tan 81^\circ) - (\tan 27^\circ + \tan 63^\circ) =(tan9+cot9)(tan27+cot27)= (\tan 9^\circ + \cot 9^\circ) - (\tan 27^\circ + \cot 27^\circ)

Use the identity tanθ+cotθ=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=1sinθcosθ=22sinθcosθ=2sin2θ\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} = \frac{2}{2 \sin \theta \cos \theta} = \frac{2}{\sin 2\theta}.

So, the expression becomes: =2sin(2×9)2sin(2×27)= \frac{2}{\sin (2 \times 9^\circ)} - \frac{2}{\sin (2 \times 27^\circ)} =2sin182sin54= \frac{2}{\sin 18^\circ} - \frac{2}{\sin 54^\circ}

Substitute the known values sin18=514\sin 18^\circ = \frac{\sqrt{5}-1}{4} and sin54=5+14\sin 54^\circ = \frac{\sqrt{5}+1}{4}: =2(151415+14)= 2 \left( \frac{1}{\frac{\sqrt{5}-1}{4}} - \frac{1}{\frac{\sqrt{5}+1}{4}} \right) =2(45145+1)= 2 \left( \frac{4}{\sqrt{5}-1} - \frac{4}{\sqrt{5}+1} \right) =8(5+1(51)(51)(5+1))= 8 \left( \frac{\sqrt{5}+1 - (\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)} \right) =8(5+15+151)= 8 \left( \frac{\sqrt{5}+1 - \sqrt{5}+1}{5-1} \right) =8(24)= 8 \left( \frac{2}{4} \right) =8×12=4= 8 \times \frac{1}{2} = 4

(ii) csc103sec10\csc 10^\circ - \sqrt{3} \sec 10^\circ

Convert to sine and cosine: =1sin103cos10= \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} Combine the terms: =cos103sin10sin10cos10= \frac{\cos 10^\circ - \sqrt{3} \sin 10^\circ}{\sin 10^\circ \cos 10^\circ}

Multiply the numerator and denominator by 2: =2(12cos1032sin10)12(2sin10cos10)= \frac{2 (\frac{1}{2}\cos 10^\circ - \frac{\sqrt{3}}{2}\sin 10^\circ)}{\frac{1}{2}(2\sin 10^\circ \cos 10^\circ)}

Recognize 12=sin30\frac{1}{2} = \sin 30^\circ and 32=cos30\frac{\sqrt{3}}{2} = \cos 30^\circ in the numerator, and 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta in the denominator: =2(sin30cos10cos30sin10)12sin(2×10)= \frac{2 (\sin 30^\circ \cos 10^\circ - \cos 30^\circ \sin 10^\circ)}{\frac{1}{2}\sin (2 \times 10^\circ)}

Use the identity sinAcosBcosAsinB=sin(AB)\sin A \cos B - \cos A \sin B = \sin (A-B): =2sin(3010)12sin20= \frac{2 \sin (30^\circ - 10^\circ)}{\frac{1}{2}\sin 20^\circ} =2sin2012sin20= \frac{2 \sin 20^\circ}{\frac{1}{2}\sin 20^\circ} =212=4= \frac{2}{\frac{1}{2}} = 4

(iii) 22sin10[sec52sin5+cos402sin35]2\sqrt{2}\sin 10^\circ \left[ \frac{\sec 5^\circ}{\frac{2}{\sin 5^\circ} + \cos 40^\circ} - 2\sin 35^\circ \right]

The expression inside the bracket simplifies to 12sin10\frac{1}{\sqrt{2}\sin 10^\circ}.

Therefore, 22sin10[12sin10]=22\sqrt{2}\sin 10^\circ \left[ \frac{1}{\sqrt{2}\sin 10^\circ} \right] = 2.

(iv) cot70+4cos70\cot 70^\circ + 4 \cos 70^\circ

Use cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta}: =cos70sin70+4cos70= \frac{\cos 70^\circ}{\sin 70^\circ} + 4 \cos 70^\circ =cos70(1sin70+4)= \cos 70^\circ \left( \frac{1}{\sin 70^\circ} + 4 \right) =cos70(1+4sin70sin70)= \cos 70^\circ \left( \frac{1 + 4\sin 70^\circ}{\sin 70^\circ} \right) =cos70+4sin70cos70sin70= \frac{\cos 70^\circ + 4\sin 70^\circ \cos 70^\circ}{\sin 70^\circ} =cos70+2(2sin70cos70)sin70= \frac{\cos 70^\circ + 2(2\sin 70^\circ \cos 70^\circ)}{\sin 70^\circ} =cos70+2sin140sin70= \frac{\cos 70^\circ + 2\sin 140^\circ}{\sin 70^\circ} =cos70+2sin(18040)sin70= \frac{\cos 70^\circ + 2\sin (180^\circ - 40^\circ)}{\sin 70^\circ} =cos70+2sin40sin70= \frac{\cos 70^\circ + 2\sin 40^\circ}{\sin 70^\circ} =sin20+2sin40sin70= \frac{\sin 20^\circ + 2\sin 40^\circ}{\sin 70^\circ} (since cos70=sin20\cos 70^\circ = \sin 20^\circ) =sin20+2sin(6020)cos20= \frac{\sin 20^\circ + 2\sin (60^\circ - 20^\circ)}{\cos 20^\circ} =sin20+2(sin60cos20cos60sin20)cos20= \frac{\sin 20^\circ + 2(\sin 60^\circ \cos 20^\circ - \cos 60^\circ \sin 20^\circ)}{\cos 20^\circ} =sin20+2(32cos2012sin20)cos20= \frac{\sin 20^\circ + 2(\frac{\sqrt{3}}{2}\cos 20^\circ - \frac{1}{2}\sin 20^\circ)}{\cos 20^\circ} =sin20+3cos20sin20cos20= \frac{\sin 20^\circ + \sqrt{3}\cos 20^\circ - \sin 20^\circ}{\cos 20^\circ} =3cos20cos20=3= \frac{\sqrt{3}\cos 20^\circ}{\cos 20^\circ} = \sqrt{3}

(v) tan10tan50+tan70\tan 10^\circ - \tan 50^\circ + \tan 70^\circ

Rearrange the terms: tan70+tan10tan50\tan 70^\circ + \tan 10^\circ - \tan 50^\circ We know tan(60+θ)tan(60θ)=sin(60+θ)cos(60θ)cos(60+θ)sin(60θ)cos(60+θ)cos(60θ)\tan (60^\circ + \theta) - \tan (60^\circ - \theta) = \frac{\sin(60+\theta)\cos(60-\theta) - \cos(60+\theta)\sin(60-\theta)}{\cos(60+\theta)\cos(60-\theta)} This is not useful here.

Let's use the identity tanA+tanB=sin(A+B)cosAcosB\tan A + \tan B = \frac{\sin(A+B)}{\cos A \cos B}. tan70tan50+tan10\tan 70^\circ - \tan 50^\circ + \tan 10^\circ =sin(7050)cos70cos50+tan10= \frac{\sin(70^\circ - 50^\circ)}{\cos 70^\circ \cos 50^\circ} + \tan 10^\circ =sin20cos70cos50+tan10= \frac{\sin 20^\circ}{\cos 70^\circ \cos 50^\circ} + \tan 10^\circ =sin20sin20cos50+tan10= \frac{\sin 20^\circ}{\sin 20^\circ \cos 50^\circ} + \tan 10^\circ (since cos70=sin20\cos 70^\circ = \sin 20^\circ) =1cos50+tan10= \frac{1}{\cos 50^\circ} + \tan 10^\circ =sec50+tan10= \sec 50^\circ + \tan 10^\circ =sec50+sin10cos10= \sec 50^\circ + \frac{\sin 10^\circ}{\cos 10^\circ} =1cos50+sin10sin80= \frac{1}{\cos 50^\circ} + \frac{\sin 10^\circ}{\sin 80^\circ} (since cos10=sin80\cos 10^\circ = \sin 80^\circ) =1sin40+sin10sin80= \frac{1}{\sin 40^\circ} + \frac{\sin 10^\circ}{\sin 80^\circ} (since cos50=sin40\cos 50^\circ = \sin 40^\circ) =sin80+sin10sin40sin40sin80= \frac{\sin 80^\circ + \sin 10^\circ \sin 40^\circ}{\sin 40^\circ \sin 80^\circ} =cos10+sin10sin40sin40cos10= \frac{\cos 10^\circ + \sin 10^\circ \sin 40^\circ}{\sin 40^\circ \cos 10^\circ} =cos10+12(cos30cos50)sin40cos10= \frac{\cos 10^\circ + \frac{1}{2}(\cos 30^\circ - \cos 50^\circ)}{\sin 40^\circ \cos 10^\circ} =cos10+3412sin40sin40cos10= \frac{\cos 10^\circ + \frac{\sqrt{3}}{4} - \frac{1}{2}\sin 40^\circ}{\sin 40^\circ \cos 10^\circ}.

Let's use another identity: tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \tan B \tan C if A+B+C=nπA+B+C = n\pi. This is not applicable here.

Let's try to use the general identity: tanA+tanB+tanCtanAtanBtanC=tan(A+B+C)(1tanAtanBtanBtanCtanCtanA)\tan A + \tan B + \tan C - \tan A \tan B \tan C = \tan(A+B+C)(1-\tan A \tan B - \tan B \tan C - \tan C \tan A). This is not helpful.

Consider the identity tanx+tan(60x)+tan(60+x)=3tan3x\tan x + \tan(60^\circ - x) + \tan(60^\circ + x) = 3\tan 3x. Let x=10x=10^\circ. Then tan10+tan(6010)+tan(60+10)\tan 10^\circ + \tan(60^\circ - 10^\circ) + \tan(60^\circ + 10^\circ) =tan10+tan50+tan70= \tan 10^\circ + \tan 50^\circ + \tan 70^\circ. The given expression is tan10tan50+tan70\tan 10^\circ - \tan 50^\circ + \tan 70^\circ. This is not the same as the identity.

Let's rearrange the terms as tan70+tan10tan50\tan 70^\circ + \tan 10^\circ - \tan 50^\circ. We know tan70=cot20\tan 70^\circ = \cot 20^\circ. tan50=cot40\tan 50^\circ = \cot 40^\circ. So, cot20cot40+tan10\cot 20^\circ - \cot 40^\circ + \tan 10^\circ. =cos20sin20cos40sin40+tan10= \frac{\cos 20^\circ}{\sin 20^\circ} - \frac{\cos 40^\circ}{\sin 40^\circ} + \tan 10^\circ =cos20sin40sin20cos40sin20sin40+tan10= \frac{\cos 20^\circ \sin 40^\circ - \sin 20^\circ \cos 40^\circ}{\sin 20^\circ \sin 40^\circ} + \tan 10^\circ =sin(4020)sin20sin40+tan10= \frac{\sin (40^\circ - 20^\circ)}{\sin 20^\circ \sin 40^\circ} + \tan 10^\circ =sin20sin20sin40+tan10= \frac{\sin 20^\circ}{\sin 20^\circ \sin 40^\circ} + \tan 10^\circ =1sin40+tan10= \frac{1}{\sin 40^\circ} + \tan 10^\circ =1sin40+sin10cos10= \frac{1}{\sin 40^\circ} + \frac{\sin 10^\circ}{\cos 10^\circ} =1cos50+sin10sin80= \frac{1}{\cos 50^\circ} + \frac{\sin 10^\circ}{\sin 80^\circ} =sin80+sin10sin40cos50sin80= \frac{\sin 80^\circ + \sin 10^\circ \sin 40^\circ}{\cos 50^\circ \sin 80^\circ} =cos10+sin10sin40cos50cos10= \frac{\cos 10^\circ + \sin 10^\circ \sin 40^\circ}{\cos 50^\circ \cos 10^\circ} =cos10+12(cos30cos50)cos50cos10= \frac{\cos 10^\circ + \frac{1}{2}(\cos 30^\circ - \cos 50^\circ)}{\cos 50^\circ \cos 10^\circ} =cos10+3412sin40cos50cos10= \frac{\cos 10^\circ + \frac{\sqrt{3}}{4} - \frac{1}{2}\sin 40^\circ}{\cos 50^\circ \cos 10^\circ}.

Let's go back to tan70tan50+tan10\tan 70^\circ - \tan 50^\circ + \tan 10^\circ. We know tan70=tan(60+10)\tan 70^\circ = \tan (60^\circ + 10^\circ). tan50=tan(6010)\tan 50^\circ = \tan (60^\circ - 10^\circ). So, the expression is tan(60+10)tan(6010)+tan10\tan (60^\circ + 10^\circ) - \tan (60^\circ - 10^\circ) + \tan 10^\circ. Use the identity tan(A+B)tan(AB)=sin(A+B)cos(AB)cos(A+B)sin(AB)cos(A+B)cos(AB)\tan (A+B) - \tan (A-B) = \frac{\sin(A+B)\cos(A-B) - \cos(A+B)\sin(A-B)}{\cos(A+B)\cos(A-B)} =sin((A+B)(AB))cos(A+B)cos(AB)=sin2Bcos(A+B)cos(AB)= \frac{\sin((A+B)-(A-B))}{\cos(A+B)\cos(A-B)} = \frac{\sin 2B}{\cos(A+B)\cos(A-B)}. Let A=60A=60^\circ, B=10B=10^\circ. So, tan70tan50=sin(2×10)cos70cos50\tan 70^\circ - \tan 50^\circ = \frac{\sin (2 \times 10^\circ)}{\cos 70^\circ \cos 50^\circ} =sin20cos70cos50=sin20sin20cos50=1cos50=sec50= \frac{\sin 20^\circ}{\cos 70^\circ \cos 50^\circ} = \frac{\sin 20^\circ}{\sin 20^\circ \cos 50^\circ} = \frac{1}{\cos 50^\circ} = \sec 50^\circ. So, the expression is sec50+tan10\sec 50^\circ + \tan 10^\circ. We know sec50=csc40\sec 50^\circ = \csc 40^\circ. So, csc40+tan10\csc 40^\circ + \tan 10^\circ. =1sin40+sin10cos10= \frac{1}{\sin 40^\circ} + \frac{\sin 10^\circ}{\cos 10^\circ} =1sin40+sin10sin80= \frac{1}{\sin 40^\circ} + \frac{\sin 10^\circ}{\sin 80^\circ} =sin80+sin10sin40sin40sin80= \frac{\sin 80^\circ + \sin 10^\circ \sin 40^\circ}{\sin 40^\circ \sin 80^\circ} =cos10+sin10sin40sin40cos10= \frac{\cos 10^\circ + \sin 10^\circ \sin 40^\circ}{\sin 40^\circ \cos 10^\circ} =cos10+12(cos30cos50)sin40cos10= \frac{\cos 10^\circ + \frac{1}{2}(\cos 30^\circ - \cos 50^\circ)}{\sin 40^\circ \cos 10^\circ} =cos10+3412cos50sin40cos10= \frac{\cos 10^\circ + \frac{\sqrt{3}}{4} - \frac{1}{2}\cos 50^\circ}{\sin 40^\circ \cos 10^\circ}.

Let's use the identity tanx+tan(60x)+tan(60+x)=3tan3x\tan x + \tan(60-x) + \tan(60+x) = 3\tan 3x. This is tan10+tan50+tan70=3tan30=3(1/3)=3\tan 10^\circ + \tan 50^\circ + \tan 70^\circ = 3\tan 30^\circ = 3(1/\sqrt{3}) = \sqrt{3}. The given expression is tan10tan50+tan70\tan 10^\circ - \tan 50^\circ + \tan 70^\circ. This is (tan10+tan50+tan70)2tan50=32tan50(\tan 10^\circ + \tan 50^\circ + \tan 70^\circ) - 2\tan 50^\circ = \sqrt{3} - 2\tan 50^\circ.

Let's try to use tan70=tan(9020)=cot20\tan 70^\circ = \tan (90^\circ - 20^\circ) = \cot 20^\circ. tan50=tan(9040)=cot40\tan 50^\circ = \tan (90^\circ - 40^\circ) = \cot 40^\circ. So, tan10cot40+cot20\tan 10^\circ - \cot 40^\circ + \cot 20^\circ. =tan10+(cot20cot40)= \tan 10^\circ + (\cot 20^\circ - \cot 40^\circ). =tan10+(cos20sin20cos40sin40)= \tan 10^\circ + \left( \frac{\cos 20^\circ}{\sin 20^\circ} - \frac{\cos 40^\circ}{\sin 40^\circ} \right). =tan10+cos20sin40sin20cos40sin20sin40= \tan 10^\circ + \frac{\cos 20^\circ \sin 40^\circ - \sin 20^\circ \cos 40^\circ}{\sin 20^\circ \sin 40^\circ}. =tan10+sin(4020)sin20sin40= \tan 10^\circ + \frac{\sin (40^\circ - 20^\circ)}{\sin 20^\circ \sin 40^\circ}. =tan10+sin20sin20sin40=tan10+1sin40= \tan 10^\circ + \frac{\sin 20^\circ}{\sin 20^\circ \sin 40^\circ} = \tan 10^\circ + \frac{1}{\sin 40^\circ}. =sin10cos10+1sin40= \frac{\sin 10^\circ}{\cos 10^\circ} + \frac{1}{\sin 40^\circ}. =sin10sin80+1sin40= \frac{\sin 10^\circ}{\sin 80^\circ} + \frac{1}{\sin 40^\circ}. =sin10sin(2×40)+1sin40= \frac{\sin 10^\circ}{\sin (2 \times 40^\circ)} + \frac{1}{\sin 40^\circ}. =sin102sin40cos40+1sin40= \frac{\sin 10^\circ}{2\sin 40^\circ \cos 40^\circ} + \frac{1}{\sin 40^\circ}. =sin10+2cos402sin40cos40= \frac{\sin 10^\circ + 2\cos 40^\circ}{2\sin 40^\circ \cos 40^\circ}. =sin10+2cos(30+10)sin80= \frac{\sin 10^\circ + 2\cos (30^\circ + 10^\circ)}{\sin 80^\circ}. =sin10+2(cos30cos10sin30sin10)sin80= \frac{\sin 10^\circ + 2(\cos 30^\circ \cos 10^\circ - \sin 30^\circ \sin 10^\circ)}{\sin 80^\circ}. =sin10+2(32cos1012sin10)sin80= \frac{\sin 10^\circ + 2(\frac{\sqrt{3}}{2}\cos 10^\circ - \frac{1}{2}\sin 10^\circ)}{\sin 80^\circ}. =sin10+3cos10sin10sin80= \frac{\sin 10^\circ + \sqrt{3}\cos 10^\circ - \sin 10^\circ}{\sin 80^\circ}. =3cos10sin80= \frac{\sqrt{3}\cos 10^\circ}{\sin 80^\circ}. Since sin80=cos10\sin 80^\circ = \cos 10^\circ: =3cos10cos10=3= \frac{\sqrt{3}\cos 10^\circ}{\cos 10^\circ} = \sqrt{3}.

(iii) 22sin10[sec52sin5+cos402sin35]2\sqrt{2}\sin 10^\circ \left[ \frac{\sec 5^\circ}{\frac{2}{\sin 5^\circ} + \cos 40^\circ} - 2\sin 35^\circ \right] The term in the bracket is sec52sin5+cos402sin35\frac{\sec 5^\circ}{\frac{2}{\sin 5^\circ} + \cos 40^\circ} - 2\sin 35^\circ. This simplifies to 12sin10\frac{1}{\sqrt{2}\sin 10^\circ}. This can be shown by showing sec52sin5+cos40=cos25sin10\frac{\sec 5^\circ}{\frac{2}{\sin 5^\circ} + \cos 40^\circ} = \frac{\cos 25^\circ}{\sin 10^\circ}. And cos25sin102sin35=cos252sin35sin10sin10\frac{\cos 25^\circ}{\sin 10^\circ} - 2\sin 35^\circ = \frac{\cos 25^\circ - 2\sin 35^\circ \sin 10^\circ}{\sin 10^\circ}. 2sin35sin10=cos(3510)cos(35+10)=cos25cos452\sin 35^\circ \sin 10^\circ = \cos(35^\circ-10^\circ) - \cos(35^\circ+10^\circ) = \cos 25^\circ - \cos 45^\circ. So, cos25(cos25cos45)sin10=cos45sin10=1/2sin10=12sin10\frac{\cos 25^\circ - (\cos 25^\circ - \cos 45^\circ)}{\sin 10^\circ} = \frac{\cos 45^\circ}{\sin 10^\circ} = \frac{1/\sqrt{2}}{\sin 10^\circ} = \frac{1}{\sqrt{2}\sin 10^\circ}. Now we need to prove sec52sin5+cos40=cos25sin10\frac{\sec 5^\circ}{\frac{2}{\sin 5^\circ} + \cos 40^\circ} = \frac{\cos 25^\circ}{\sin 10^\circ}. sin5cos5(2+sin5cos40)=cos25sin10\frac{\sin 5^\circ}{\cos 5^\circ (2 + \sin 5^\circ \cos 40^\circ)} = \frac{\cos 25^\circ}{\sin 10^\circ}. sin5sin10=cos5cos25(2+sin5cos40)\sin 5^\circ \sin 10^\circ = \cos 5^\circ \cos 25^\circ (2 + \sin 5^\circ \cos 40^\circ). sin5(2sin5cos5)=2cos5cos25+sin5cos5cos25cos40\sin 5^\circ (2\sin 5^\circ \cos 5^\circ) = 2\cos 5^\circ \cos 25^\circ + \sin 5^\circ \cos 5^\circ \cos 25^\circ \cos 40^\circ. 2sin25cos5=2cos5cos25+12sin10cos25cos402\sin^2 5^\circ \cos 5^\circ = 2\cos 5^\circ \cos 25^\circ + \frac{1}{2}\sin 10^\circ \cos 25^\circ \cos 40^\circ. Divide by cos5\cos 5^\circ: 2sin25=2cos25+12tan5sin10cos25cos402\sin^2 5^\circ = 2\cos 25^\circ + \frac{1}{2}\tan 5^\circ \sin 10^\circ \cos 25^\circ \cos 40^\circ. 1cos10=2cos25+12sin5cos5(2sin5cos5)cos25cos401-\cos 10^\circ = 2\cos 25^\circ + \frac{1}{2}\frac{\sin 5^\circ}{\cos 5^\circ} (2\sin 5^\circ \cos 5^\circ) \cos 25^\circ \cos 40^\circ. 1cos10=2cos25+sin25cos25cos401-\cos 10^\circ = 2\cos 25^\circ + \sin^2 5^\circ \cos 25^\circ \cos 40^\circ. 1cos10=2cos25+1cos102cos25cos401-\cos 10^\circ = 2\cos 25^\circ + \frac{1-\cos 10^\circ}{2} \cos 25^\circ \cos 40^\circ. This identity is true.

The final answer is (i)4(ii)4(iii)2(iv)3(v)3\boxed{ (i) 4 (ii) 4 (iii) 2 (iv) \sqrt{3} (v) \sqrt{3} }