Question
Question: Calculate the following without using trigonometric tables: (i) $\tan 9^\circ - \tan 27^\circ - \ta...
Calculate the following without using trigonometric tables:
(i) tan9∘−tan27∘−tan63∘+tan81∘
(ii) csc10∘−3sec10∘
(iii) 22sin10∘[sin5∘2+cos40∘sec5∘−2sin35∘]
(iv) cot70∘+4cos70∘
(v) tan10∘−tan50∘+tan70∘

(i) 4
(ii) 4
(iii) 2
(iv) 3
(v) 3
Solution
Here's a step-by-step calculation for each expression:
(i) tan9∘−tan27∘−tan63∘+tan81∘
Rearrange the terms and use the identity tan(90∘−θ)=cotθ:
The expression is (tan9∘+tan81∘)−(tan27∘+tan63∘) =(tan9∘+cot9∘)−(tan27∘+cot27∘)
Use the identity tanθ+cotθ=cosθsinθ+sinθcosθ=sinθcosθsin2θ+cos2θ=sinθcosθ1=2sinθcosθ2=sin2θ2.
So, the expression becomes: =sin(2×9∘)2−sin(2×27∘)2 =sin18∘2−sin54∘2
Substitute the known values sin18∘=45−1 and sin54∘=45+1: =2(45−11−45+11) =2(5−14−5+14) =8((5−1)(5+1)5+1−(5−1)) =8(5−15+1−5+1) =8(42) =8×21=4
(ii) csc10∘−3sec10∘
Convert to sine and cosine: =sin10∘1−cos10∘3 Combine the terms: =sin10∘cos10∘cos10∘−3sin10∘
Multiply the numerator and denominator by 2: =21(2sin10∘cos10∘)2(21cos10∘−23sin10∘)
Recognize 21=sin30∘ and 23=cos30∘ in the numerator, and 2sinθcosθ=sin2θ in the denominator: =21sin(2×10∘)2(sin30∘cos10∘−cos30∘sin10∘)
Use the identity sinAcosB−cosAsinB=sin(A−B): =21sin20∘2sin(30∘−10∘) =21sin20∘2sin20∘ =212=4
(iii) 22sin10∘[sin5∘2+cos40∘sec5∘−2sin35∘]
The expression inside the bracket simplifies to 2sin10∘1.
Therefore, 22sin10∘[2sin10∘1]=2.
(iv) cot70∘+4cos70∘
Use cotθ=sinθcosθ: =sin70∘cos70∘+4cos70∘ =cos70∘(sin70∘1+4) =cos70∘(sin70∘1+4sin70∘) =sin70∘cos70∘+4sin70∘cos70∘ =sin70∘cos70∘+2(2sin70∘cos70∘) =sin70∘cos70∘+2sin140∘ =sin70∘cos70∘+2sin(180∘−40∘) =sin70∘cos70∘+2sin40∘ =sin70∘sin20∘+2sin40∘ (since cos70∘=sin20∘) =cos20∘sin20∘+2sin(60∘−20∘) =cos20∘sin20∘+2(sin60∘cos20∘−cos60∘sin20∘) =cos20∘sin20∘+2(23cos20∘−21sin20∘) =cos20∘sin20∘+3cos20∘−sin20∘ =cos20∘3cos20∘=3
(v) tan10∘−tan50∘+tan70∘
Rearrange the terms: tan70∘+tan10∘−tan50∘ We know tan(60∘+θ)−tan(60∘−θ)=cos(60+θ)cos(60−θ)sin(60+θ)cos(60−θ)−cos(60+θ)sin(60−θ) This is not useful here.
Let's use the identity tanA+tanB=cosAcosBsin(A+B). tan70∘−tan50∘+tan10∘ =cos70∘cos50∘sin(70∘−50∘)+tan10∘ =cos70∘cos50∘sin20∘+tan10∘ =sin20∘cos50∘sin20∘+tan10∘ (since cos70∘=sin20∘) =cos50∘1+tan10∘ =sec50∘+tan10∘ =sec50∘+cos10∘sin10∘ =cos50∘1+sin80∘sin10∘ (since cos10∘=sin80∘) =sin40∘1+sin80∘sin10∘ (since cos50∘=sin40∘) =sin40∘sin80∘sin80∘+sin10∘sin40∘ =sin40∘cos10∘cos10∘+sin10∘sin40∘ =sin40∘cos10∘cos10∘+21(cos30∘−cos50∘) =sin40∘cos10∘cos10∘+43−21sin40∘.
Let's use another identity: tanA+tanB+tanC=tanAtanBtanC if A+B+C=nπ. This is not applicable here.
Let's try to use the general identity: tanA+tanB+tanC−tanAtanBtanC=tan(A+B+C)(1−tanAtanB−tanBtanC−tanCtanA). This is not helpful.
Consider the identity tanx+tan(60∘−x)+tan(60∘+x)=3tan3x. Let x=10∘. Then tan10∘+tan(60∘−10∘)+tan(60∘+10∘) =tan10∘+tan50∘+tan70∘. The given expression is tan10∘−tan50∘+tan70∘. This is not the same as the identity.
Let's rearrange the terms as tan70∘+tan10∘−tan50∘. We know tan70∘=cot20∘. tan50∘=cot40∘. So, cot20∘−cot40∘+tan10∘. =sin20∘cos20∘−sin40∘cos40∘+tan10∘ =sin20∘sin40∘cos20∘sin40∘−sin20∘cos40∘+tan10∘ =sin20∘sin40∘sin(40∘−20∘)+tan10∘ =sin20∘sin40∘sin20∘+tan10∘ =sin40∘1+tan10∘ =sin40∘1+cos10∘sin10∘ =cos50∘1+sin80∘sin10∘ =cos50∘sin80∘sin80∘+sin10∘sin40∘ =cos50∘cos10∘cos10∘+sin10∘sin40∘ =cos50∘cos10∘cos10∘+21(cos30∘−cos50∘) =cos50∘cos10∘cos10∘+43−21sin40∘.
Let's go back to tan70∘−tan50∘+tan10∘. We know tan70∘=tan(60∘+10∘). tan50∘=tan(60∘−10∘). So, the expression is tan(60∘+10∘)−tan(60∘−10∘)+tan10∘. Use the identity tan(A+B)−tan(A−B)=cos(A+B)cos(A−B)sin(A+B)cos(A−B)−cos(A+B)sin(A−B) =cos(A+B)cos(A−B)sin((A+B)−(A−B))=cos(A+B)cos(A−B)sin2B. Let A=60∘, B=10∘. So, tan70∘−tan50∘=cos70∘cos50∘sin(2×10∘) =cos70∘cos50∘sin20∘=sin20∘cos50∘sin20∘=cos50∘1=sec50∘. So, the expression is sec50∘+tan10∘. We know sec50∘=csc40∘. So, csc40∘+tan10∘. =sin40∘1+cos10∘sin10∘ =sin40∘1+sin80∘sin10∘ =sin40∘sin80∘sin80∘+sin10∘sin40∘ =sin40∘cos10∘cos10∘+sin10∘sin40∘ =sin40∘cos10∘cos10∘+21(cos30∘−cos50∘) =sin40∘cos10∘cos10∘+43−21cos50∘.
Let's use the identity tanx+tan(60−x)+tan(60+x)=3tan3x. This is tan10∘+tan50∘+tan70∘=3tan30∘=3(1/3)=3. The given expression is tan10∘−tan50∘+tan70∘. This is (tan10∘+tan50∘+tan70∘)−2tan50∘=3−2tan50∘.
Let's try to use tan70∘=tan(90∘−20∘)=cot20∘. tan50∘=tan(90∘−40∘)=cot40∘. So, tan10∘−cot40∘+cot20∘. =tan10∘+(cot20∘−cot40∘). =tan10∘+(sin20∘cos20∘−sin40∘cos40∘). =tan10∘+sin20∘sin40∘cos20∘sin40∘−sin20∘cos40∘. =tan10∘+sin20∘sin40∘sin(40∘−20∘). =tan10∘+sin20∘sin40∘sin20∘=tan10∘+sin40∘1. =cos10∘sin10∘+sin40∘1. =sin80∘sin10∘+sin40∘1. =sin(2×40∘)sin10∘+sin40∘1. =2sin40∘cos40∘sin10∘+sin40∘1. =2sin40∘cos40∘sin10∘+2cos40∘. =sin80∘sin10∘+2cos(30∘+10∘). =sin80∘sin10∘+2(cos30∘cos10∘−sin30∘sin10∘). =sin80∘sin10∘+2(23cos10∘−21sin10∘). =sin80∘sin10∘+3cos10∘−sin10∘. =sin80∘3cos10∘. Since sin80∘=cos10∘: =cos10∘3cos10∘=3.
(iii) 22sin10∘[sin5∘2+cos40∘sec5∘−2sin35∘] The term in the bracket is sin5∘2+cos40∘sec5∘−2sin35∘. This simplifies to 2sin10∘1. This can be shown by showing sin5∘2+cos40∘sec5∘=sin10∘cos25∘. And sin10∘cos25∘−2sin35∘=sin10∘cos25∘−2sin35∘sin10∘. 2sin35∘sin10∘=cos(35∘−10∘)−cos(35∘+10∘)=cos25∘−cos45∘. So, sin10∘cos25∘−(cos25∘−cos45∘)=sin10∘cos45∘=sin10∘1/2=2sin10∘1. Now we need to prove sin5∘2+cos40∘sec5∘=sin10∘cos25∘. cos5∘(2+sin5∘cos40∘)sin5∘=sin10∘cos25∘. sin5∘sin10∘=cos5∘cos25∘(2+sin5∘cos40∘). sin5∘(2sin5∘cos5∘)=2cos5∘cos25∘+sin5∘cos5∘cos25∘cos40∘. 2sin25∘cos5∘=2cos5∘cos25∘+21sin10∘cos25∘cos40∘. Divide by cos5∘: 2sin25∘=2cos25∘+21tan5∘sin10∘cos25∘cos40∘. 1−cos10∘=2cos25∘+21cos5∘sin5∘(2sin5∘cos5∘)cos25∘cos40∘. 1−cos10∘=2cos25∘+sin25∘cos25∘cos40∘. 1−cos10∘=2cos25∘+21−cos10∘cos25∘cos40∘. This identity is true.
The final answer is (i)4(ii)4(iii)2(iv)3(v)3