Solveeit Logo

Question

Question: A force defined by the law $\overrightarrow{F}=(3x^2i+7xy^2j+3k)N$ acts on a particle that is shifte...

A force defined by the law F=(3x2i+7xy2j+3k)N\overrightarrow{F}=(3x^2i+7xy^2j+3k)N acts on a particle that is shifted from the origin of the coordinate system to a point P (2 m, 8 m, 0 m).

(a) Calculate the work done by the force when the particle follows path OAP.

(b) Calculate the work done by the force, when the particle follows a curvilinear path defined by the law y=2x2y=2x^2.

Answer

(a) The work done by the force when the particle follows path OAP is 71923\frac{7192}{3} J.

(b) The work done by the force when the particle follows a curvilinear path defined by the law y=2x2y=2x^2 is 20562056 J.

Explanation

Solution

The work done by a variable force F\overrightarrow{F} acting on a particle displaced along a path is given by the line integral: W=FdrW = \int \overrightarrow{F} \cdot d\overrightarrow{r}

Given F=(3x2i+7xy2j+3k)N\overrightarrow{F}=(3x^2i+7xy^2j+3k)N and dr=dxi+dyj+dzkd\overrightarrow{r} = dxi + dyj + dzk. So, Fdr=(3x2)dx+(7xy2)dy+(3)dz\overrightarrow{F} \cdot d\overrightarrow{r} = (3x^2)dx + (7xy^2)dy + (3)dz.

First, let's check if the force is conservative by calculating its curl: ×F=ijkxyz3x27xy23=i((3)y(7xy2)z)j((3)x(3x2)z)+k((7xy2)x(3x2)y)\nabla \times \overrightarrow{F} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3x^2 & 7xy^2 & 3 \end{vmatrix} = i \left( \frac{\partial(3)}{\partial y} - \frac{\partial(7xy^2)}{\partial z} \right) - j \left( \frac{\partial(3)}{\partial x} - \frac{\partial(3x^2)}{\partial z} \right) + k \left( \frac{\partial(7xy^2)}{\partial x} - \frac{\partial(3x^2)}{\partial y} \right) =i(00)j(00)+k(7y20)=7y2k= i (0 - 0) - j (0 - 0) + k (7y^2 - 0) = 7y^2 k

Since ×F0\nabla \times \overrightarrow{F} \neq \overrightarrow{0}, the force is non-conservative, which means the work done depends on the path taken. The particle moves from O (0, 0, 0) to P (2 m, 8 m, 0 m). Notice that the z-coordinate is 0 for both start and end points. Also, the paths described are in the xy-plane, implying z=0z=0 and dz=0dz=0 along the entire path. Therefore, the term 3dz3dz in the work integral will always contribute zero. So, W=(3x2dx+7xy2dy)W = \int (3x^2dx + 7xy^2dy).

(a) Work done by the force when the particle follows path OAP.

The path OAP consists of two segments:

  1. Segment OA: From O (0, 0, 0) to A (2, 0, 0). Along this segment, y=0    dy=0y=0 \implies dy=0 and z=0    dz=0z=0 \implies dz=0. xx varies from 0 to 2. WOA=x=023x2dx+y=007x(0)2(0)=023x2dx=[x3]02=2303=8 JW_{OA} = \int_{x=0}^{2} 3x^2dx + \int_{y=0}^{0} 7x(0)^2(0) = \int_{0}^{2} 3x^2dx = [x^3]_{0}^{2} = 2^3 - 0^3 = 8 \text{ J}.

  2. Segment AP: From A (2, 0, 0) to P (2, 8, 0). Along this segment, x=2    dx=0x=2 \implies dx=0 and z=0    dz=0z=0 \implies dz=0. yy varies from 0 to 8. WAP=x=223(2)2(0)+y=087(2)y2dy=0814y2dy=14[y33]08=14(833033)=14×5123=71683 JW_{AP} = \int_{x=2}^{2} 3(2)^2(0) + \int_{y=0}^{8} 7(2)y^2dy = \int_{0}^{8} 14y^2dy = 14 \left[ \frac{y^3}{3} \right]_{0}^{8} = 14 \left( \frac{8^3}{3} - \frac{0^3}{3} \right) = 14 \times \frac{512}{3} = \frac{7168}{3} \text{ J}.

Total work done along path OAP: WOAP=WOA+WAP=8+71683=24+71683=71923 JW_{OAP} = W_{OA} + W_{AP} = 8 + \frac{7168}{3} = \frac{24 + 7168}{3} = \frac{7192}{3} \text{ J}.

(b) Work done by the force when the particle follows a curvilinear path defined by the law y=2x2y=2x^2.

The path is from O (0, 0, 0) to P (2, 8, 0). Along this path, y=2x2    dy=4xdxy=2x^2 \implies dy = 4xdx. Also z=0    dz=0z=0 \implies dz=0. xx varies from 0 to 2. Wcurvilinear=x=02(3x2dx+7xy2dy)W_{curvilinear} = \int_{x=0}^{2} (3x^2dx + 7xy^2dy) Substitute y=2x2y=2x^2 and dy=4xdxdy=4xdx: Wcurvilinear=02(3x2dx+7x(2x2)2(4xdx))W_{curvilinear} = \int_{0}^{2} (3x^2dx + 7x(2x^2)^2(4xdx)) Wcurvilinear=02(3x2+7x(4x4)(4x))dxW_{curvilinear} = \int_{0}^{2} (3x^2 + 7x(4x^4)(4x))dx Wcurvilinear=02(3x2+112x6)dxW_{curvilinear} = \int_{0}^{2} (3x^2 + 112x^6)dx Wcurvilinear=[3x33+112x77]02W_{curvilinear} = \left[ \frac{3x^3}{3} + \frac{112x^7}{7} \right]_{0}^{2} Wcurvilinear=[x3+16x7]02W_{curvilinear} = \left[ x^3 + 16x^7 \right]_{0}^{2} Wcurvilinear=(23+1627)(03+1607)W_{curvilinear} = (2^3 + 16 \cdot 2^7) - (0^3 + 16 \cdot 0^7) Wcurvilinear=8+16128=8+2048=2056 JW_{curvilinear} = 8 + 16 \cdot 128 = 8 + 2048 = 2056 \text{ J}.

The work done for the two paths is different, which is expected for a non-conservative force.