Solveeit Logo

Question

Question: A ball of mass $m_1$ moving with velocity $u_1$ makes a head-on collision with another ball moving w...

A ball of mass m1m_1 moving with velocity u1u_1 makes a head-on collision with another ball moving with velocity u2u_2. Denoting the coefficient of restitution by the symbol ee, deduce suitable expression for the loss of mechanical energy in the collision.

Answer

ΔKE=12m1m2m1+m2(u1u2)2(1e2)\Delta KE = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (u_1 - u_2)^2 (1 - e^2)

Explanation

Solution

To deduce the expression for the loss of mechanical energy in a head-on collision, we will use the principles of conservation of linear momentum and the definition of the coefficient of restitution.

Let:

  • m1m_1 and m2m_2 be the masses of the two balls.
  • u1u_1 and u2u_2 be their initial velocities before collision.
  • v1v_1 and v2v_2 be their final velocities after collision.
  • ee be the coefficient of restitution.

1. Conservation of Linear Momentum:

For a collision, the total linear momentum of the system is conserved:

m1u1+m2u2=m1v1+m2v2(1)m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2 \quad (1)

2. Coefficient of Restitution:

The coefficient of restitution ee is defined as the ratio of the relative speed of separation to the relative speed of approach:

e=v2v1u1u2e = \frac{v_2 - v_1}{u_1 - u_2}

This can be rewritten as:

v2v1=e(u1u2)(2)v_2 - v_1 = e(u_1 - u_2) \quad (2)

3. Initial and Final Kinetic Energies:

The initial kinetic energy (KEiKE_i) before collision is:

KEi=12m1u12+12m2u22KE_i = \frac{1}{2}m_1 u_1^2 + \frac{1}{2}m_2 u_2^2

The final kinetic energy (KEfKE_f) after collision is:

KEf=12m1v12+12m2v22KE_f = \frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2

4. Loss of Mechanical Energy (ΔKE\Delta KE):

The loss of mechanical energy (kinetic energy) is the difference between the initial and final kinetic energies:

ΔKE=KEiKEf=(12m1u12+12m2u22)(12m1v12+12m2v22)\Delta KE = KE_i - KE_f = \left( \frac{1}{2}m_1 u_1^2 + \frac{1}{2}m_2 u_2^2 \right) - \left( \frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2 \right)

ΔKE=12m1(u12v12)+12m2(u22v22)\Delta KE = \frac{1}{2}m_1(u_1^2 - v_1^2) + \frac{1}{2}m_2(u_2^2 - v_2^2)

ΔKE=12m1(u1v1)(u1+v1)+12m2(u2v2)(u2+v2)(3)\Delta KE = \frac{1}{2}m_1(u_1 - v_1)(u_1 + v_1) + \frac{1}{2}m_2(u_2 - v_2)(u_2 + v_2) \quad (3)

From equation (1), rearrange to get:

m1(u1v1)=m2(v2u2)(4)m_1(u_1 - v_1) = m_2(v_2 - u_2) \quad (4)

Let X=m1(u1v1)=m2(v2u2)X = m_1(u_1 - v_1) = m_2(v_2 - u_2).

So, u1v1=X/m1u_1 - v_1 = X/m_1 and u2v2=X/m2u_2 - v_2 = -X/m_2.

Substitute these into equation (3):

ΔKE=12(Xm1)(u1+v1)+12(Xm2)(u2+v2)\Delta KE = \frac{1}{2} \left( \frac{X}{m_1} \right) (u_1 + v_1) + \frac{1}{2} \left( \frac{-X}{m_2} \right) (u_2 + v_2)

ΔKE=12X[u1+v1m1u2+v2m2]\Delta KE = \frac{1}{2}X \left[ \frac{u_1 + v_1}{m_1} - \frac{u_2 + v_2}{m_2} \right]

This approach can be complicated. Let's use an alternative manipulation from equation (3):

ΔKE=12m1(u1v1)(u1+v1)+12m2(u2v2)(u2+v2)\Delta KE = \frac{1}{2}m_1(u_1 - v_1)(u_1 + v_1) + \frac{1}{2}m_2(u_2 - v_2)(u_2 + v_2)

Using m1(u1v1)=m2(v2u2)m_1(u_1 - v_1) = m_2(v_2 - u_2), we can write m2(u2v2)=m1(u1v1)m_2(u_2 - v_2) = -m_1(u_1 - v_1).

ΔKE=12m1(u1v1)(u1+v1)12m1(u1v1)(u2+v2)\Delta KE = \frac{1}{2}m_1(u_1 - v_1)(u_1 + v_1) - \frac{1}{2}m_1(u_1 - v_1)(u_2 + v_2)

ΔKE=12m1(u1v1)[(u1+v1)(u2+v2)]\Delta KE = \frac{1}{2}m_1(u_1 - v_1) [(u_1 + v_1) - (u_2 + v_2)]

ΔKE=12m1(u1v1)[(u1u2)(v2v1)]\Delta KE = \frac{1}{2}m_1(u_1 - v_1) [(u_1 - u_2) - (v_2 - v_1)]

Now, let urel=u1u2u_{rel} = u_1 - u_2 (relative speed of approach) and vrel=v2v1v_{rel} = v_2 - v_1 (relative speed of separation).

From equation (2), vrel=eurelv_{rel} = e u_{rel}.

So, ΔKE=12m1(u1v1)[ureleurel]\Delta KE = \frac{1}{2}m_1(u_1 - v_1) [u_{rel} - e u_{rel}]

ΔKE=12m1(u1v1)urel(1e)(5)\Delta KE = \frac{1}{2}m_1(u_1 - v_1) u_{rel} (1 - e) \quad (5)

Now we need to express (u1v1)(u_1 - v_1) in terms of initial velocities and masses.

From equation (1): m1u1+m2u2=m1v1+m2v2m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2

From equation (2): v2=v1+e(u1u2)v_2 = v_1 + e(u_1 - u_2)

Substitute v2v_2 into equation (1):

m1u1+m2u2=m1v1+m2(v1+e(u1u2))m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 (v_1 + e(u_1 - u_2))

m1u1+m2u2=(m1+m2)v1+m2e(u1u2)m_1 u_1 + m_2 u_2 = (m_1 + m_2) v_1 + m_2 e(u_1 - u_2)

(m1+m2)v1=m1u1+m2u2m2e(u1u2)(m_1 + m_2) v_1 = m_1 u_1 + m_2 u_2 - m_2 e(u_1 - u_2)

v1=m1u1+m2u2m2e(u1u2)m1+m2v_1 = \frac{m_1 u_1 + m_2 u_2 - m_2 e(u_1 - u_2)}{m_1 + m_2}

Now, find (u1v1)(u_1 - v_1):

u1v1=u1m1u1+m2u2m2e(u1u2)m1+m2u_1 - v_1 = u_1 - \frac{m_1 u_1 + m_2 u_2 - m_2 e(u_1 - u_2)}{m_1 + m_2}

u1v1=u1(m1+m2)(m1u1+m2u2m2e(u1u2))m1+m2u_1 - v_1 = \frac{u_1(m_1 + m_2) - (m_1 u_1 + m_2 u_2 - m_2 e(u_1 - u_2))}{m_1 + m_2}

u1v1=m1u1+m2u1m1u1m2u2+m2e(u1u2)m1+m2u_1 - v_1 = \frac{m_1 u_1 + m_2 u_1 - m_1 u_1 - m_2 u_2 + m_2 e(u_1 - u_2)}{m_1 + m_2}

u1v1=m2u1m2u2+m2e(u1u2)m1+m2u_1 - v_1 = \frac{m_2 u_1 - m_2 u_2 + m_2 e(u_1 - u_2)}{m_1 + m_2}

u1v1=m2(u1u2)+m2e(u1u2)m1+m2u_1 - v_1 = \frac{m_2(u_1 - u_2) + m_2 e(u_1 - u_2)}{m_1 + m_2}

u1v1=m2(u1u2)(1+e)m1+m2u_1 - v_1 = \frac{m_2(u_1 - u_2)(1 + e)}{m_1 + m_2}

u1v1=m2urel(1+e)m1+m2u_1 - v_1 = \frac{m_2 u_{rel} (1 + e)}{m_1 + m_2}

Substitute this expression for (u1v1)(u_1 - v_1) back into equation (5):

ΔKE=12(m2urel(1+e)m1+m2)urel(1e)\Delta KE = \frac{1}{2} \left( \frac{m_2 u_{rel} (1 + e)}{m_1 + m_2} \right) u_{rel} (1 - e)

ΔKE=12m1m2m1+m2(1+e)(1e)urel2\Delta KE = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (1 + e)(1 - e) u_{rel}^2

ΔKE=12m1m2m1+m2(1e2)(u1u2)2\Delta KE = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (1 - e^2) (u_1 - u_2)^2

This is the suitable expression for the loss of mechanical energy in the collision.

The second part of the question "of the same mass at rest on a frictionless horizontal." seems incomplete or a remnant from another question and is not considered for the general deduction.

The final answer is 12m1m2m1+m2(u1u2)2(1e2)\boxed{\frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (u_1 - u_2)^2 (1 - e^2)}.

Explanation of the solution:

  1. Apply the principle of conservation of linear momentum: m1u1+m2u2=m1v1+m2v2m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2.
  2. Use the definition of the coefficient of restitution: e=v2v1u1u2e = \frac{v_2 - v_1}{u_1 - u_2}.
  3. The loss of mechanical energy is the difference between initial and final kinetic energies: ΔKE=(12m1u12+12m2u22)(12m1v12+12m2v22)\Delta KE = (\frac{1}{2}m_1 u_1^2 + \frac{1}{2}m_2 u_2^2) - (\frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2).
  4. Algebraically manipulate these equations to express ΔKE\Delta KE in terms of initial parameters (m1,m2,u1,u2m_1, m_2, u_1, u_2) and the coefficient of restitution (ee). The derivation involves expressing final velocities in terms of initial velocities and ee, then substituting into the energy loss equation, or by a more elegant method of factoring and substituting relative velocities. The result is the standard formula for kinetic energy loss in a collision.