Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatri...

Let A=[111213111]A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} and B=[402]B = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} such that AX=BAX = B, then X=X =

A

[121]\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}

B

[211]\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}

C

[112]\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}

D

[211]\begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix}

Answer

[211]\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}

Explanation

Solution

  1. Extract equations from AX=BAX = B.

  2. Subtract eq. (1) from (3) to find y=1y=-1.

  3. Substitute yy into eq. (1) to get x+z=3x+z=3.

  4. Substitute yy into eq. (2) and use x=3zx = 3-z to solve for zz.

  5. Find xx from x+z=3x+z=3.