Solveeit Logo

Question

Question: If $P(\theta) = \begin{bmatrix} 1 & cot\theta \\ -cot\theta & 1 \end{bmatrix}$ and $\underline{PQ=I}...

If P(θ)=[1cotθcotθ1]P(\theta) = \begin{bmatrix} 1 & cot\theta \\ -cot\theta & 1 \end{bmatrix} and PQ=I\underline{PQ=I}, then

(cosec2θ)Q(cosec^2\theta)Q is given by:

(where II is an identity matrix of 2×22 \times 2 order)

A

P(θ)P(\theta)

B

P(θ)P(-\theta)

C

P(2θ)P(2\theta)

D

II

Answer

P(θ)P(-\theta)

Explanation

Solution

Given

P(θ)=[1cotθcotθ1],P(\theta)=\begin{bmatrix}1 & \cot\theta\\ -\cot\theta & 1\end{bmatrix},

and PQ=IPQ=I so that Q=P1Q=P^{-1}.

Step 1: Find det(P(θ))\det(P(\theta)):

det(P(θ))=11(cotθ)(cotθ)=1+cot2θ=csc2θ.\det(P(\theta))=1\cdot1 - (-\cot\theta)(\cot\theta)=1+\cot^2\theta=\csc^2\theta.

Step 2: Find the inverse:

P1=1csc2θ[1cotθcotθ1].P^{-1}=\frac{1}{\csc^2\theta}\begin{bmatrix}1 & -\cot\theta\\ \cot\theta & 1\end{bmatrix}.

Thus,

Q=P1=1csc2θ[1cotθcotθ1].Q=P^{-1}=\frac{1}{\csc^2\theta}\begin{bmatrix}1 & -\cot\theta\\ \cot\theta & 1\end{bmatrix}.

Step 3: Multiply by csc2θ\csc^2\theta:

csc2θQ=[1cotθcotθ1].\csc^2\theta\, Q = \begin{bmatrix} 1 & -\cot\theta \\ \cot\theta & 1 \end{bmatrix}.

Step 4: Compare with P(θ)P(-\theta):

P(θ)=[1cot(θ)cot(θ)1]=[1cotθcotθ1].P(-\theta)=\begin{bmatrix}1 & \cot(-\theta)\\ -\cot(-\theta) & 1\end{bmatrix}=\begin{bmatrix}1 & -\cot\theta\\ \cot\theta & 1\end{bmatrix}.

Thus,

csc2θQ=P(θ).\csc^2\theta\, Q = P(-\theta).