Question
Question: If $P(\theta) = \begin{bmatrix} 1 & \cot \theta \\ -\cot \theta & 1 \end{bmatrix}$ and $\underline{P...
If P(θ)=[1−cotθcotθ1] and PQ=I, then
(cosec2θ)Q is given by:
(where I is an identity matrix of 2×2 order)

A
P(θ)
B
P(-θ)
C
P(2θ)
D
I
Answer
P(-θ)
Explanation
Solution
Given
P(θ)=[1−cotθcotθ1].Since PQ=I, we have
Q=P(θ)−1=detP(θ)1[1cotθ−cotθ1].Calculate the determinant:
detP(θ)=1⋅1−(cotθ)(−cotθ)=1+cot2θ=csc2θ.Thus,
Q=csc2θ1[1cotθ−cotθ1]=sin2θ[1cotθ−cotθ1].Multiplying both sides by csc2θ we get:
(csc2θ)Q=[1cotθ−cotθ1].Now, note that:
P(−θ)=[1−cot(−θ)cot(−θ)1]=[1cotθ−cotθ1].Thus,
(csc2θ)Q=P(−θ).