Solveeit Logo

Question

Question: If $P(\theta) = \begin{bmatrix} 1 & \cot \theta \\ -\cot \theta & 1 \end{bmatrix}$ and $\underline{P...

If P(θ)=[1cotθcotθ1]P(\theta) = \begin{bmatrix} 1 & \cot \theta \\ -\cot \theta & 1 \end{bmatrix} and PQ=I\underline{PQ=I}, then

(cosec2θ)Q(cosec^2 \theta) Q is given by:

(where II is an identity matrix of 2×22 \times 2 order)

A

P(θ\theta)

B

P(-θ\theta)

C

P(2θ\theta)

D

I

Answer

P(-θ\theta)

Explanation

Solution

Given

P(θ)=[1cotθcotθ1].P(\theta) = \begin{bmatrix} 1 & \cot \theta \\ -\cot \theta & 1 \end{bmatrix}.

Since PQ=IPQ = I, we have

Q=P(θ)1=1detP(θ)[1cotθcotθ1].Q = P(\theta)^{-1} = \frac{1}{\det P(\theta)} \begin{bmatrix} 1 & -\cot \theta \\ \cot \theta & 1 \end{bmatrix}.

Calculate the determinant:

detP(θ)=11(cotθ)(cotθ)=1+cot2θ=csc2θ.\det P(\theta) = 1\cdot1 - (\cot \theta)(-\cot \theta) = 1 + \cot^2\theta = \csc^2 \theta.

Thus,

Q=1csc2θ[1cotθcotθ1]=sin2θ[1cotθcotθ1].Q = \frac{1}{\csc^2\theta}\begin{bmatrix} 1 & -\cot \theta \\ \cot \theta & 1 \end{bmatrix} = \sin^2\theta \begin{bmatrix} 1 & -\cot \theta \\ \cot \theta & 1 \end{bmatrix}.

Multiplying both sides by csc2θ\csc^2 \theta we get:

(csc2θ)Q=[1cotθcotθ1].(\csc^2 \theta) Q = \begin{bmatrix} 1 & -\cot \theta \\ \cot \theta & 1 \end{bmatrix}.

Now, note that:

P(θ)=[1cot(θ)cot(θ)1]=[1cotθcotθ1].P(-\theta) = \begin{bmatrix} 1 & \cot(-\theta) \\ -\cot(-\theta) & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\cot \theta \\ \cot \theta & 1 \end{bmatrix}.

Thus,

(csc2θ)Q=P(θ).(\csc^2 \theta) Q = P(-\theta).