Solveeit Logo

Question

Question: $y = 3 \cos 100 \pi (2 t - x)$. The value of $\lambda$ is ...

y=3cos100π(2tx)y = 3 \cos 100 \pi (2 t - x). The value of λ\lambda is

A

4 cm

B

6 cm

C

2 cm

D

1 cm

Answer

2 cm

Explanation

Solution

The given wave equation is

y=3cos(100π(2tx))y = 3 \cos\Bigl(100\pi (2t - x)\Bigr).

Expanding the argument, we have:

y=3cos(200πt100πx)y = 3 \cos \Bigl(200\pi t - 100\pi x\Bigr).

Comparing with the standard form

y=Acos(ωtkx)y = A \cos(\omega t - kx),

we identify:

ω=200πandk=100π\omega = 200\pi \quad \text{and} \quad k = 100\pi.

The wavelength is given by:

λ=2πk=2π100π=2100=150 m\lambda = \frac{2\pi}{k} = \frac{2\pi}{100\pi} = \frac{2}{100} = \frac{1}{50} \text{ m}.

Since 1 m = 100 cm,

λ=150 m=10050 cm=2 cm\lambda = \frac{1}{50} \text{ m} = \frac{100}{50} \text{ cm} = 2 \text{ cm}.