Solveeit Logo

Question

Question: Two equal point charges A and B are R distance apart. A third point charge placed on the perpendicul...

Two equal point charges A and B are R distance apart. A third point charge placed on the perpendicular bisector at a distance 'x' from the centre will experience maximum electrostatic force when :-

A

x = R22\frac{R}{2\sqrt{2}}

B

x = R2\frac{R}{\sqrt{2}}

C

x = R2\sqrt{2}

D

x = 22\sqrt{2}R

Answer

x = R22\frac{R}{2\sqrt{2}}

Explanation

Solution

To determine the position 'x' where the third point charge experiences maximum electrostatic force, we follow these steps:

  1. Set up the geometry and forces:
    Let the two equal point charges be QQ and the third point charge be qq.
    The distance between charges A and B is RR. Let the origin be the midpoint of A and B. So, charge A is at (R/2,0)(-R/2, 0) and charge B is at (R/2,0)(R/2, 0).
    The third charge qq is placed on the perpendicular bisector at (0,x)(0, x).
    The distance from charge A (or B) to charge qq is r=(R/2)2+x2=R2/4+x2r = \sqrt{(R/2)^2 + x^2} = \sqrt{R^2/4 + x^2}.

  2. Calculate the force due to one charge:
    The magnitude of the force exerted by charge A (or B) on charge qq is given by Coulomb's Law:
    F=kQqr2=kQqR2/4+x2F = \frac{kQq}{r^2} = \frac{kQq}{R^2/4 + x^2}, where k=14πε0k = \frac{1}{4\pi\varepsilon_0}.

  3. Determine the net force:
    Due to symmetry, the horizontal components of the forces from A and B on qq cancel out. The vertical components add up.
    Let θ\theta be the angle between the line connecting A to qq (or B to qq) and the perpendicular bisector (y-axis).
    From the geometry, cosθ=xr=xR2/4+x2\cos\theta = \frac{x}{r} = \frac{x}{\sqrt{R^2/4 + x^2}}.
    The net force FnetF_{net} on charge qq is the sum of the vertical components:
    Fnet=Fcosθ+Fcosθ=2FcosθF_{net} = F \cos\theta + F \cos\theta = 2F \cos\theta
    Substitute the expressions for FF and cosθ\cos\theta:
    Fnet=2(kQqR2/4+x2)(xR2/4+x2)F_{net} = 2 \left( \frac{kQq}{R^2/4 + x^2} \right) \left( \frac{x}{\sqrt{R^2/4 + x^2}} \right)
    Fnet=2kQqx(R2/4+x2)3/2F_{net} = \frac{2kQqx}{(R^2/4 + x^2)^{3/2}}

  4. Find the maximum force using differentiation:
    To find the value of xx for which FnetF_{net} is maximum, we differentiate FnetF_{net} with respect to xx and set the derivative to zero (dFnetdx=0\frac{dF_{net}}{dx} = 0).
    Let C=2kQqC = 2kQq (a constant). So, Fnet(x)=Cx(R2/4+x2)3/2F_{net}(x) = C \frac{x}{(R^2/4 + x^2)^{3/2}}.
    Using the quotient rule or product rule:
    dFnetdx=Cddx[x(R2/4+x2)3/2]\frac{dF_{net}}{dx} = C \frac{d}{dx} \left[ x (R^2/4 + x^2)^{-3/2} \right]
    dFnetdx=C[1(R2/4+x2)3/2+x(32)(R2/4+x2)5/2(2x)]\frac{dF_{net}}{dx} = C \left[ 1 \cdot (R^2/4 + x^2)^{-3/2} + x \cdot \left(-\frac{3}{2}\right) (R^2/4 + x^2)^{-5/2} (2x) \right]
    dFnetdx=C[(R2/4+x2)3/23x2(R2/4+x2)5/2]\frac{dF_{net}}{dx} = C \left[ (R^2/4 + x^2)^{-3/2} - 3x^2 (R^2/4 + x^2)^{-5/2} \right]
    Set dFnetdx=0\frac{dF_{net}}{dx} = 0:
    (R2/4+x2)3/23x2(R2/4+x2)5/2=0(R^2/4 + x^2)^{-3/2} - 3x^2 (R^2/4 + x^2)^{-5/2} = 0
    Factor out (R2/4+x2)5/2(R^2/4 + x^2)^{-5/2}:
    (R2/4+x2)5/2[(R2/4+x2)(3/2)(5/2)3x2]=0(R^2/4 + x^2)^{-5/2} \left[ (R^2/4 + x^2)^{(-3/2) - (-5/2)} - 3x^2 \right] = 0
    (R2/4+x2)5/2[(R2/4+x2)13x2]=0(R^2/4 + x^2)^{-5/2} \left[ (R^2/4 + x^2)^1 - 3x^2 \right] = 0
    Since (R2/4+x2)5/2(R^2/4 + x^2)^{-5/2} cannot be zero (for real xx), we must have:
    R2/4+x23x2=0R^2/4 + x^2 - 3x^2 = 0
    R2/42x2=0R^2/4 - 2x^2 = 0
    R2/4=2x2R^2/4 = 2x^2
    x2=R28x^2 = \frac{R^2}{8}
    x=R28=R8=R22x = \sqrt{\frac{R^2}{8}} = \frac{R}{\sqrt{8}} = \frac{R}{2\sqrt{2}} (since x is a distance, it must be positive).

The force will be maximum when x=R22x = \frac{R}{2\sqrt{2}}.