Question
Question: The value of \(\displaystyle \int_0^x \lfloor t+1\rfloor^3 \,dt\) (where \(\lfloor\cdot\rfloor\) den...
The value of ∫0x⌊t+1⌋3dt (where ⌊⋅⌋ denotes the greatest integer function of x) is equal to

A
(2[x]([x]+1))2+([x]+1)3{x}
B
(2[x]([x]+1))3+([x]+1)3{x}
C
(2[x]([x]+1))3+([x]+1)2{x}
D
None of these
Answer
(2[x]([x]+1))2+([x]+1)3{x}
Explanation
Solution
Solution Outline
- Partition the integral from t=0 to t=x at integer points.
- For integer k from 1 to ⌊x⌋: ∫k−1k⌊t+1⌋3dt=∫k−1kk3dt=k3.
- For the remaining part t∈[⌊x⌋,x]: ∫⌊x⌋x⌊t+1⌋3dt=∫⌊x⌋x(⌊x⌋+1)3dt=(⌊x⌋+1)3{x}.
- Sum of cubes formula: k=1∑nk3=(2n(n+1))2,n=⌊x⌋.
- Combine to obtain ∫0x⌊t+1⌋3dt=(2[x]([x]+1))2+([x]+1)3{x}.