Solveeit Logo

Question

Question: The equations of two waves are gives as $y_1 = a \sin(\omega t + \phi_1)$, $y_2 = a \sin(\omega t + ...

The equations of two waves are gives as y1=asin(ωt+ϕ1)y_1 = a \sin(\omega t + \phi_1), y2=asin(ωt+ϕ2)y_2 = a \sin(\omega t + \phi_2). If amplitude and time period of resultant wave is same as the individual waves. Then (ϕ1ϕ2)(\phi_1 - \phi_2) is

A

cos1(12)\cos^{-1}(-\frac{1}{2})

B

(cos1(14)(\cos^{-1}(-\frac{1}{4})

C

cos1(16)\cos^{-1}(-\frac{1}{6})

D

cos1(18)\cos^{-1}(-\frac{1}{8})

Answer

cos1(12)\cos^{-1}(-\frac{1}{2})

Explanation

Solution

The resultant wave from the two waves is given by:

y=y1+y2=asin(ωt+ϕ1)+asin(ωt+ϕ2)y = y_1 + y_2 = a\sin(\omega t + \phi_1) + a\sin(\omega t + \phi_2)

Using the sine addition formula:

y=2acos(ϕ1ϕ22)sin(ωt+ϕ1+ϕ22)y = 2a \cos\left(\frac{\phi_1-\phi_2}{2}\right) \sin\left(\omega t + \frac{\phi_1+\phi_2}{2}\right)

The amplitude of the resultant wave is 2acos(ϕ1ϕ22)2a\cos\left(\frac{\phi_1-\phi_2}{2}\right).

Since the given amplitude of the resultant wave is the same as that of the individual waves (i.e. aa):

2acos(ϕ1ϕ22)=a    cos(ϕ1ϕ22)=122a \cos\left(\frac{\phi_1-\phi_2}{2}\right) = a \implies \cos\left(\frac{\phi_1-\phi_2}{2}\right) = \frac{1}{2}

Thus:

ϕ1ϕ22=π3    ϕ1ϕ2=2π3\frac{\phi_1-\phi_2}{2} = \frac{\pi}{3} \implies \phi_1 - \phi_2 = \frac{2\pi}{3}

Note that cos1(12)=2π3\cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3}.

Therefore, the phase difference (ϕ1ϕ2)(\phi_1 - \phi_2) is:

cos1(12)\cos^{-1}\left(-\frac{1}{2}\right)